scispace - formally typeset
Search or ask a question
Author

Xiaolei Ma

Bio: Xiaolei Ma is an academic researcher from Beihang University. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 29, co-authored 83 publications receiving 5977 citations. Previous affiliations of Xiaolei Ma include Chinese Ministry of Public Security & University of Washington.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
17 Mar 2015-PLOS ONE
TL;DR: A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi to extend deep learning theory into large-scale transportation network analysis.
Abstract: Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

439 citations

Journal ArticleDOI
Haiyang Yu1, Wu Zhihai1, Shuqin Wang, Yunpeng Wang1, Xiaolei Ma1 
26 Jun 2017-Sensors
TL;DR: Wang et al. as mentioned in this paper proposed a spatiotemporal recurrent convolutional networks (SRCNs) for traffic forecasting, which inherit the advantages of deep CNNs and LSTM neural networks.
Abstract: Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

385 citations

Posted Content
Haiyang Yu1, Wu Zhihai1, Shuqin Wang, Yunpeng Wang1, Xiaolei Ma1 
TL;DR: A network grid representation method that can retain the fine-scale structure of a transportation network and outperform other deep learning-based algorithms in both short-term and long-term traffic prediction is proposed.
Abstract: Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

339 citations

Journal ArticleDOI
TL;DR: A clear disparity between commuters and noncommuters is determined and the existence of job–house imbalance in Beijing is confirmed, providing useful insights for policymakers to shape a more balanced job–housing relationship by adjusting the monocentric urban structure of Beijing.

258 citations

Journal ArticleDOI
TL;DR: A novel method, gradient boosting decision trees (GBDTs), is proposed to predict the nonlinear and imbalanced incident clearance time based on different types of explanatory variables, and is significantly superior to other algorithms for incidents with both short and long clearance times.
Abstract: Identifying and quantifying the influential factors on incident clearance time can benefit incident management for accident causal analysis and prediction, and consequently mitigate the impact of non-recurrent congestion. Traditional incident clearance time studies rely on either statistical models with rigorous assumptions or artificial intelligence (AI) approaches with poor interpretability. This paper proposes a novel method, gradient boosting decision trees (GBDTs), to predict the nonlinear and imbalanced incident clearance time based on different types of explanatory variables. The GBDT inherits both the advantages of statistical models and AI approaches, and can identify the complex and nonlinear relationship while computing the relative importance among variables. One-year crash data from Washington state, USA, incident tracking system are used to demonstrate the effectiveness of GBDT method. Based on the distribution of incident clearance time, two groups are categorized for prediction with a 15-min threshold. A comparative study confirms that the GBDT method is significantly superior to other algorithms for incidents with both short and long clearance times. In addition, incident response time is found to be the greatest contributor to short clearance time with more than 41% relative importance, while traffic volume generates the second greatest impact on incident clearance time with relative importance of 27.34% and 19.56%, respectively.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.

1,521 citations

Journal ArticleDOI
Zheng Zhao1, Weihai Chen1, Xingming Wu1, Peter C. Y. Chen, Jingmeng Liu1 
TL;DR: A novel traffic forecast model based on long short-term memory (LSTM) network is proposed, which considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units.
Abstract: Short-term traffic forecast is one of the essential issues in intelligent transportation system. Accurate forecast result enables commuters make appropriate travel modes, travel routes, and departure time, which is meaningful in traffic management. To promote the forecast accuracy, a feasible way is to develop a more effective approach for traffic data analysis. The availability of abundant traffic data and computation power emerge in recent years, which motivates us to improve the accuracy of short-term traffic forecast via deep learning approaches. A novel traffic forecast model based on long short-term memory (LSTM) network is proposed. Different from conventional forecast models, the proposed LSTM network considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units. A comparison with other representative forecast models validates that the proposed LSTM network can achieve a better performance.

1,204 citations

Journal ArticleDOI
TL;DR: In this article, a novel neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is combined with the graph convolutionsal network and the gated recurrent unit (GRU), is proposed.
Abstract: Accurate and real-time traffic forecasting plays an important role in the intelligent traffic system and is of great significance for urban traffic planning, traffic management, and traffic control. However, traffic forecasting has always been considered an “open” scientific issue, owing to the constraints of urban road network topological structure and the law of dynamic change with time. To capture the spatial and temporal dependences simultaneously, we propose a novel neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is combined with the graph convolutional network (GCN) and the gated recurrent unit (GRU). Specifically, the GCN is used to learn complex topological structures for capturing spatial dependence and the gated recurrent unit is used to learn dynamic changes of traffic data for capturing temporal dependence. Then, the T-GCN model is employed to traffic forecasting based on the urban road network. Experiments demonstrate that our T-GCN model can obtain the spatio-temporal correlation from traffic data and the predictions outperform state-of-art baselines on real-world traffic datasets. Our tensorflow implementation of the T-GCN is available at https://www.github.com/lehaifeng/T-GCN .

1,188 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain.
Abstract: In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.

903 citations