scispace - formally typeset
Search or ask a question
Author

Xiaolei Qu

Other affiliations: Rice University
Bio: Xiaolei Qu is an academic researcher from Nanjing University. The author has contributed to research in topics: Adsorption & Catalysis. The author has an hindex of 27, co-authored 91 publications receiving 3995 citations. Previous affiliations of Xiaolei Qu include Rice University.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent development in nanotechnology for water and wastewater treatment is reviewed, covering candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization.

1,744 citations

Journal ArticleDOI
TL;DR: The modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a promising route both to retrofit aging infrastructure and to develop high performance, low maintenance decentralized treatment systems including point-of-use devices.
Abstract: Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world’s population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water t...

583 citations

Journal ArticleDOI
01 Jan 2016-Carbon
TL;DR: In this article, the chemical and structural properties of bulk, colloidal, and dissolved BC were thoroughly examined using elemental analysis and a variety of spectroscopic techniques, and it was concluded that dissolved BC consists primarily of small aromatic clusters substituted by carboxylic groups, and by phenolic groups to a less extent.

227 citations

Journal ArticleDOI
TL;DR: Dissolved black carbon released from biochar decreased its ability to further generate ROS due to lower light absorption, which has significant implications on the environmental fate of dissolved BC and that of priority pollutants.
Abstract: Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants.

221 citations

Journal ArticleDOI
TL;DR: Gold ion (Au3+) was used as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups, indicating a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.
Abstract: Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au3+) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au3+was readily reduced to zerovalent gold nanoparticles (AuNPs, 2–15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au3+ reduction, reflecting the predominance of the extracellular matrix in Au3+ reduction. XPS, UV–vis, and FTIR a...

147 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent development in nanotechnology for water and wastewater treatment is reviewed, covering candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization.

1,744 citations

Journal ArticleDOI
TL;DR: Recommendations regarding the use of the EEO concept, including the upscaling of laboratory results, were derived from an extensive analysis of studies reported in the peer-reviewed literature enabling a critical comparison of various established and emerging AOPs based on electrical energy per order (EEO) values.

1,677 citations

Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

1,158 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a sketch about treatment technologies followed by their heavy metal capture capacity from industrial effluent, the treatment performance, their remediation capacity and probable environmental and health impacts were deliberated in this review article.
Abstract: The controversy related to the environment pollution is increasing in human life and in the eco-system. Especially, the water pollution is growing rapidly due to the wastewater discharge from the industries. The only way to find the new water resource is the reuse of treated wastewater. Several remediation technologies are available which provides a convenience to reuse the reclaimed wastewater. Heavy metals like Zn, Cu, Pb, Ni, Cd, Hg, etc. contributes various environmental problems based on their toxicity. These toxic metals are exposed to human and environment, the accumulation of ions takes place which causes serious health and environmental hazards. Hence, it is a major concern in the environment. Due to this concern, the significance of developing technology for removing heavy metals has been increased. This paper contributes the outline of new literature with two objectives. First, it provides the sketch about treatment technologies followed by their heavy metal capture capacity from industrial effluent. The treatment performance, their remediation capacity and probable environmental and health impacts were deliberated in this review article. Conclusively, this review paper furnishes the information about the important methods incorporated in lab scale studies which are required to identify the feasible and convenient wastewater treatment. Moreover, attempts have been made to confer the emphasis on sequestration of heavy metals from industrial effluent and establish the scientific background for reducing the discharge of heavy metals into the environment.

1,040 citations

Journal ArticleDOI
TL;DR: In this article, the use of carbon nanotubes (CNTs), member of the fullerene structural family, is considered with special focus on the removal of heavy metals from water (lead, chromium, cadmium, arsenic, copper, zinc and nickel).

946 citations