scispace - formally typeset
Search or ask a question
Author

Xiaolong Ma

Bio: Xiaolong Ma is an academic researcher from Northeastern University. The author has contributed to research in topics: Pruning (decision trees) & Computer science. The author has an hindex of 17, co-authored 103 publications receiving 1095 citations. Previous affiliations of Xiaolong Ma include Chinese Academy of Sciences & College of William & Mary.


Papers
More filters
Proceedings ArticleDOI
14 Oct 2017
TL;DR: The CirCNN architecture is proposed, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc) and FFT can be used as the key computing kernel which ensures universal and small-footprint implementations.
Abstract: Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning, which affects performance and throughput; 2) the increased training complexity; and 3) the lack of rigirous guarantee of compression ratio and inference accuracy.To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from $\mathrm {O}(n^{2})$ to $\mathrm {O}(n$ log n) and the storage complexity from $\mathrm {O}(n^{2})$ to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: the DNNs based on CirCNN can converge to the same “effectiveness” as DNNs without compression. We propose the CirCNN architecture, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc In CirCNN architecture: 1) Due to the recursive property, FFT can be used as the key computing kernel which ensures universal and small-footprint implementations. 2) The compressed but regular network structure avoids the pitfalls of the network pruning and facilitates high performance and throughput with highly pipelined and parallel design. To demonstrate the performance and energy efficiency, we test CIR-CNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6 - 102X energy efficiency improvements compared with the best state-of-the-art results.CCS Concepts• Computer systems organization$\rightarrow $ Embedded hardware;

262 citations

Proceedings ArticleDOI
09 Mar 2020
TL;DR: The proposed PatDNN is an end-to-end framework to efficiently execute DNN on mobile devices with the help of a novel model compression technique---pattern-based pruning based on an extended ADMM solution framework---and a set of thorough architecture-aware compiler/code generation-based optimizations, i.e., filter kernel reordering, compressed weight storage, register load redundancy elimination, and parameter auto-tuning.
Abstract: With the emergence of a spectrum of high-end mobile devices, many applications that formerly required desktop-level computation capability are being transferred to these devices. However, executing Deep Neural Networks (DNNs) inference is still challenging considering the high computation and storage demands, specifically, if real-time performance with high accuracy is needed. Weight pruning of DNNs is proposed, but existing schemes represent two extremes in the design space: non-structured pruning is fine-grained, accurate, but not hardware friendly; structured pruning is coarse-grained, hardware-efficient, but with higher accuracy loss. In this paper, we advance the state-of-the-art by introducing a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in the design space. With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency. In other words, our method achieves the best of both worlds, and is desirable across theory/algorithm, compiler, and hardware levels. The proposed PatDNN is an end-to-end framework to efficiently execute DNN on mobile devices with the help of a novel model compression technique---pattern-based pruning based on an extended ADMM solution framework---and a set of thorough architecture-aware compiler/code generation-based optimizations, i.e., filter kernel reordering, compressed weight storage, register load redundancy elimination, and parameter auto-tuning. Evaluation results demonstrate that PatDNN outperforms three state-of-the-art end-to-end DNN frameworks, TensorFlow Lite, TVM, and Alibaba Mobile Neural Network with speedup up to 44.5X, 11.4X, and 7.1X, respectively, with no accuracy compromise. Real-time inference of representative large-scale DNNs (e.g., VGG-16, ResNet-50) can be achieved using mobile devices.

178 citations

Journal ArticleDOI
03 Apr 2020
TL;DR: This work proposes AutoCompress, an automatic structured pruning framework with the following key performance improvements: effectively incorporate the combination of structured pruned schemes in the automatic process, and adopt the state-of-art ADMM-based structured weight pruning as the core algorithm.
Abstract: Structured weight pruning is a representative model compression technique of DNNs to reduce the storage and computation requirements and accelerate inference. An automatic hyperparameter determination process is necessary due to the large number of flexible hyperparameters. This work proposes AutoCompress, an automatic structured pruning framework with the following key performance improvements: (i) effectively incorporate the combination of structured pruning schemes in the automatic process; (ii) adopt the state-of-art ADMM-based structured weight pruning as the core algorithm, and propose an innovative additional purification step for further weight reduction without accuracy loss; and (iii) develop effective heuristic search method enhanced by experience-based guided search, replacing the prior deep reinforcement learning technique which has underlying incompatibility with the target pruning problem. Extensive experiments on CIFAR-10 and ImageNet datasets demonstrate that AutoCompress is the key to achieve ultra-high pruning rates on the number of weights and FLOPs that cannot be achieved before. As an example, AutoCompress outperforms the prior work on automatic model compression by up to 33× in pruning rate (120× reduction in the actual parameter count) under the same accuracy. Significant inference speedup has been observed from the AutoCompress framework on actual measurements on smartphone. We release models of this work at anonymous link: http://bit.ly/2VZ63dS.

156 citations

Proceedings ArticleDOI
TL;DR: CirCNN as discussed by the authors utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) and the storage complexity from O(n2) to O(nlogn) with negligible accuracy loss.
Abstract: Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning; 2) the increased training complexity; and 3) the lack of rigorous guarantee of compression ratio and inference accuracy. To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from O(n2) to O(nlogn) and the storage complexity from O(n2) to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: it can converge to the same effectiveness as DNNs without compression. The CirCNN architecture, a universal DNN inference engine that can be implemented on various hardware/software platforms with configurable network architecture. To demonstrate the performance and energy efficiency, we test CirCNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6-102X energy efficiency improvements compared with the best state-of-the-art results.

98 citations

Journal ArticleDOI
03 Apr 2020
TL;DR: PCONV as mentioned in this paper introduces a new sparsity dimension, comprising a new fine-grained pruning pattern inside the coarse grained structures, which can achieve real-time inference on large-scale DNNs.
Abstract: Model compression techniques on Deep Neural Network (DNN) have been widely acknowledged as an effective way to achieve acceleration on a variety of platforms, and DNN weight pruning is a straightforward and effective method. There are currently two mainstreams of pruning methods representing two extremes of pruning regularity: non-structured, fine-grained pruning can achieve high sparsity and accuracy, but is not hardware friendly; structured, coarse-grained pruning exploits hardware-efficient structures in pruning, but suffers from accuracy drop when the pruning rate is high. In this paper, we introduce PCONV, comprising a new sparsity dimension, – fine-grained pruning patterns inside the coarse-grained structures. PCONV comprises two types of sparsities, Sparse Convolution Patterns (SCP) which is generated from intra-convolution kernel pruning and connectivity sparsity generated from inter-convolution kernel pruning. Essentially, SCP enhances accuracy due to its special vision properties, and connectivity sparsity increases pruning rate while maintaining balanced workload on filter computation. To deploy PCONV, we develop a novel compiler-assisted DNN inference framework and execute PCONV models in real-time without accuracy compromise, which cannot be achieved in prior work. Our experimental results show that, PCONV outperforms three state-of-art end-to-end DNN frameworks, TensorFlow-Lite, TVM, and Alibaba Mobile Neural Network with speedup up to 39.2 ×, 11.4 ×, and 6.3 ×, respectively, with no accuracy loss. Mobile devices can achieve real-time inference on large-scale DNNs.

95 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
20 Mar 2020
TL;DR: This article reviews the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification, and answers the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures.
Abstract: Domain-specific hardware is becoming a promising topic in the backdrop of improvement slow down for general-purpose processors due to the foreseeable end of Moore’s Law. Machine learning, especially deep neural networks (DNNs), has become the most dazzling domain witnessing successful applications in a wide spectrum of artificial intelligence (AI) tasks. The incomparable accuracy of DNNs is achieved by paying the cost of hungry memory consumption and high computational complexity, which greatly impedes their deployment in embedded systems. Therefore, the DNN compression concept was naturally proposed and widely used for memory saving and compute acceleration. In the past few years, a tremendous number of compression techniques have sprung up to pursue a satisfactory tradeoff between processing efficiency and application accuracy. Recently, this wave has spread to the design of neural network accelerators for gaining extremely high performance. However, the amount of related works is incredibly huge and the reported approaches are quite divergent. This research chaos motivates us to provide a comprehensive survey on the recent advances toward the goal of efficient compression and execution of DNNs without significantly compromising accuracy, involving both the high-level algorithms and their applications in hardware design. In this article, we review the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification. We explain their compression principles, evaluation metrics, sensitivity analysis, and joint-way use. Then, we answer the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures. In the end, we discuss several existing issues such as fair comparison, testing workloads, automatic compression, influence on security, and framework/hardware-level support, and give promising topics in this field and the possible challenges as well. This article attempts to enable readers to quickly build up a big picture of neural network compression and acceleration, clearly evaluate various methods, and confidently get started in the right way.

499 citations

Proceedings ArticleDOI
02 Jun 2018
TL;DR: This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI, and achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1.5 teraflops.
Abstract: Interactive AI-powered services require low-latency evaluation of deep neural network (DNN) models—aka ""real-time AI"". The growing demand for computationally expensive, state-of-the-art DNNs, coupled with diminishing performance gains of general-purpose architectures, has fueled an explosion of specialized Neural Processing Units (NPUs). NPUs for interactive services should satisfy two requirements: (1) execution of DNN models with low latency, high throughput, and high efficiency, and (2) flexibility to accommodate evolving state-of-the-art models (e.g., RNNs, CNNs, MLPs) without costly silicon updates. This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI. The Brainwave NPU achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1. The NPU attains this performance using a single-threaded SIMD ISA paired with a distributed microarchitecture capable of dispatching over 7M operations from a single instruction. The spatially distributed microarchitecture, scaled up to 96,000 multiply-accumulate units, is supported by hierarchical instruction decoders and schedulers coupled with thousands of independently addressable high-bandwidth on-chip memories, and can transparently exploit many levels of fine-grain SIMD parallelism. When targeting an FPGA, microarchitectural parameters such as native datapaths and numerical precision can be "synthesis specialized" to models at compile time, enabling atypically high FPGA performance competitive with hardened NPUs. When running on an Intel Stratix 10 280 FPGA, the Brainwave NPU achieves performance ranging from ten to over thirty-five teraflops, with no batching, on large, memory-intensive RNNs.

498 citations

Book
01 Jan 1997

437 citations

Proceedings ArticleDOI
26 Mar 2019
TL;DR: This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.
Abstract: At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.

385 citations