scispace - formally typeset
Search or ask a question
Author

Xiaoming Fang

Bio: Xiaoming Fang is an academic researcher from South China University of Technology. The author has contributed to research in topics: Phase-change material & Composite number. The author has an hindex of 45, co-authored 138 publications receiving 7076 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a hybrid phase change materials (PCM) and forced air convection (FA) system is presented to prevent heat accumulation in a battery pack and maintain the maximum temperature under 50°C in all cycles.

465 citations

Journal ArticleDOI
TL;DR: In this paper, a paraffin/expanded graphite composite phase change thermal energy storage material was prepared by absorbing the paraffIN into an expanded graphite that has an excellent absorbability.

448 citations

Journal ArticleDOI
TL;DR: In this paper, a thermal management system based on phase change materials (PCMs) is discussed. But, the performance of the PCM-based thermal management systems for each kind of electronic components, Li-ion batteries and photovoltaic (PV) cells is not discussed.
Abstract: Improper operating temperature will degrade the performances of electronic components, Li-ion batteries and photovoltaic (PV) cells, which calls for a good thermal management system. In this paper, specific attention is paid to the thermal management systems based on the phase change materials (PCMs). Performances of the PCM-based thermal management systems for each kind of these three devices along with the type of PCM used, thermal properties of that kind of PCM, like phase change temperature, enthalpy of phase change and thermal conductivity are discussed. Discussion in detail on techniques to improve the thermal conductivity of PCMs is made because of its crucial influence. Advanced-structure heatsinks with multi-layer PCMs and hybrid passive heatsinks combined with active cooling are also introduced. The PCM-based thermal management system is powerful in ensuring electronic devices, Li-ion batteries and photovoltaic cells working safely and efficiently.

385 citations

Journal ArticleDOI
TL;DR: In this paper, the paraffin/expanded graphite (EG) composite phase change material (PCM) was prepared by absorbing liquid Paraffin into the expanded graphite, in which paraffIN was chosen as the PCM.

379 citations

Journal ArticleDOI
TL;DR: In this article, high-efficiency visible-light-driven Ag3PO4/AgI photocatalysts with different mole fractions of AgI have been synthesized via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and UV-vis diffuse reflectance spectrograph (DRS).
Abstract: High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts with different mole fractions of AgI have been synthesized via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (>420 nm), the Ag3PO4/AgI photocatalysts exhibit enhanced photocatalytic activity compared to pure Ag3PO4 or AgI for the degradation of methyl orange and phenol, and the highest activity is reached by the Ag3PO4/AgI hybrid photocatalyst with 20% of AgI. The quenching effects of different scavengers suggest that the reactive h+ and O2•– play the major role in the MO degradation. Detailed X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis reveals that Ag nanoparticles (NPs) form on the surface of Ag3PO4/AgI in the early stage of the photocatalytic oxidation process, thus leading to the transformation from Ag3PO4/AgI to Ag3PO...

339 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations