scispace - formally typeset
Search or ask a question
Author

Xiaoming Wang

Bio: Xiaoming Wang is an academic researcher from Dalian University of Technology. The author has contributed to research in topics: Topology optimization & Level set method. The author has an hindex of 7, co-authored 31 publications receiving 2757 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new approach to structural topology optimization that represents the structural boundary by a level set model that is embedded in a scalar function of a higher dimension that demonstrates outstanding flexibility of handling topological changes, fidelity of boundary representation and degree of automation.

2,404 citations

Journal ArticleDOI
TL;DR: In this article, a color level-set model is proposed for structural shape and topology optimization in a multi-material domain, which is an alternative approach to the popular homogenization-based methods of rule of mixtures for multiphase modeling.

403 citations

Journal ArticleDOI
TL;DR: In this paper, a level-set method for designing monolithic compliant mechanisms made of multiple materials as an optimization of continuum heterogeneous structures is proposed. But this method is restricted to single-input and single-output mechanisms.
Abstract: A monolithic compliant mechanism transmits applied forces from specified input ports to output ports by elastic deformation of its comprising materials, fulfilling required functions analogous to a rigid-body mechanism. In this paper, we propose a level-set method for designing monolithic compliant mechanisms made of multiple materials as an optimization of continuum heterogeneous structures. Central to the method is a multiphase level-set model that precisely specifies the distinct material regions and their sharp interfaces as well as the geometric boundary of the structure. Combined with the classical shape derivatives, the level-set method yields an Eulerian computational system of geometric partial differential equations, capable of performing topological changes and capturing geometric evolutions at the interface and the boundary. The proposed method is demonstrated for single-input and single-output mechanisms and illustrated with several two-dimensional examples of synthetics of multimaterial mechanisms of force inverters and gripping and clamping devices. An analysis on the formation of de facto hinges is presented based on the shape gradient information. A scheme to ensure a well-connected topology of the mechanism during the process of optimization is also presented.

201 citations

Journal ArticleDOI
TL;DR: A level-set based variational approach for the design of this class of heterogeneous objects that incorporates dimension, shape, topology, and material properties, yielding a computational system of coupled geometric evolution and diffusion partial differential equations.
Abstract: A heterogeneous object is referred to as a solid object made of different constituent materials. The object is of a finite collection of regions of a set of prescribed material classes of continuously varying material properties. These properties have a discontinuous change across the interface of the material regions. In this paper, we propose a level-set based variational approach for the design of this class of heterogeneous objects. Central to the approach is a variational framework for a well-posed formulation of the design problem. In particular, we adapt the Mumford–Shah model which specifies that any point of the object belongs to either of two types: inside a material region of a well-defined gradient or on the boundary edges and surfaces of discontinuities. Furthermore, the set of discontinuities is represented implicitly, using a multi-phase level set model. This level-set based variational approach yields a computational system of coupled geometric evolution and diffusion partial differential equations. Promising features of the proposed method include strong regularity in the problem formulation and inherent capabilities of geometric and material modeling, yielding a common framework for optimization of the heterogeneous objects that incorporates dimension, shape, topology, and material properties. The proposed method is illustrated with several 2D examples of optimal design of multi-material structures and materials.

139 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-phase level-set model for the geometric and material representation and numerical solution of a least squares optimization problem is presented. But the level set model does not specify the material regions and their sharp boundaries in contrast to the conventional homogenization-based approaches.
Abstract: The problem of designing composite materials with desired mechanical properties is to specify the materials microstructures in terms of the topology and distribution of their constituent material phases within a unit cell of periodic microstructures. In this paper we present an approach based on a multi-phase level-set model for the geometric and material representation and for numerical solution of a least squares optimization problem. The level-set model precisely specifies the material regions and their sharp boundaries in contrast to a raster discretization of the conventional homogenization-based approaches. Combined with the classical shape derivatives, the level-set method yields a computational system of partial differential equations. In using the Eulerian computation scheme with a fixed rectilinear grid and a fixed mesh in the unit cell, the gradient descent solution of the optimization captures the interfacial boundaries naturally and performs topological changes accurately. The proposed method is illustrated with several 2D examples for the synthesis of heterogeneous microstructures of elastic and/or thermoelastic composites composed of two and three material phases.

53 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A new numerical method based on a combination of the classical shape derivative and of the level-set method for front propagation, which can easily handle topology changes and is strongly dependent on the initial guess.

2,176 citations

Journal ArticleDOI
TL;DR: An overview, comparison and critical review of the different approaches to topology optimization, their strengths, weaknesses, similarities and dissimilarities and suggests guidelines for future research.
Abstract: Topology optimization has undergone a tremendous development since its introduction in the seminal paper by Bendsoe and Kikuchi in 1988. By now, the concept is developing in many different directions, including “density”, “level set”, “topological derivative”, “phase field”, “evolutionary” and several others. The paper gives an overview, comparison and critical review of the different approaches, their strengths, weaknesses, similarities and dissimilarities and suggests guidelines for future research.

1,816 citations

Journal ArticleDOI
TL;DR: Future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration are pointed out.
Abstract: Additive manufacturing (AM) is poised to bring about a revolution in the way products are designed, manufactured, and distributed to end users. This technology has gained significant academic as well as industry interest due to its ability to create complex geometries with customizable material properties. AM has also inspired the development of the maker movement by democratizing design and manufacturing. Due to the rapid proliferation of a wide variety of technologies associated with AM, there is a lack of a comprehensive set of design principles, manufacturing guidelines, and standardization of best practices. These challenges are compounded by the fact that advancements in multiple technologies (for example materials processing, topology optimization) generate a "positive feedback loop" effect in advancing AM. In order to advance research interest and investment in AM technologies, some fundamental questions and trends about the dependencies existing in these avenues need highlighting. The goal of our review paper is to organize this body of knowledge surrounding AM, and present current barriers, findings, and future trends significantly to the researchers. We also discuss fundamental attributes of AM processes, evolution of the AM industry, and the affordances enabled by the emergence of AM in a variety of areas such as geometry processing, material design, and education. We conclude our paper by pointing out future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration. The fundamental attributes and challenges/barriers of Additive Manufacturing (AM).The evolution of research on AM with a focus on engineering capabilities.The affordances enabled by AM such as geometry, material and tools design.The developments in industry, intellectual property, and education-related aspects.The important future trends of AM technologies.

1,792 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys are reviewed.

1,393 citations