scispace - formally typeset
Search or ask a question
Author

Xiaoming Wen

Bio: Xiaoming Wen is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Perovskite (structure) & Photoluminescence. The author has an hindex of 43, co-authored 174 publications receiving 6014 citations. Previous affiliations of Xiaoming Wen include University of New South Wales & Imperial College London.


Papers
More filters
Journal ArticleDOI
TL;DR: A universal potassium passivation strategy is developed to improve the quality of slot-die printed tin oxide electron transport layers and demonstrate highly efficient and hysteresis-free flexible devices.
Abstract: Perovskite solar cells (PSCs) have reached an impressive efficiency over 23%. One of its promising characteristics is the low-cost solution printability, especially for flexible solar cells. However, printing large area uniform electron transport layers on rough and soft plastic substrates without hysteresis is still a great challenge. Herein, we demonstrate slot-die printed high quality tin oxide films for high efficiency flexible PSCs. The inherent hysteresis induced by the tin oxide layer is suppressed using a universal potassium interfacial passivation strategy regardless of fabricating methods. Results show that the potassium cations, not the anions, facilitate the growth of perovskite grains, passivate the interface, and contribute to the enhanced efficiency and stability. The small size flexible PSCs achieve a high efficiency of 17.18% and large size (5 × 6 cm2) flexible modules obtain an efficiency over 15%. This passivation strategy has shown great promise for pursuing high performance large area flexible PSCs.

525 citations

Journal ArticleDOI
TL;DR: In this article, temperature-dependent spectroscopic results were presented to shed some light on the presently unclear fluorescence mechanism of carbon dots, and it was shown that carbon dots exhibit similar temperature behavior as metallic quantum dots (nanoclusters) but are different from inorganic semiconductor quantum dots.
Abstract: Carbon dots are cost-effective, environmental friendly, and biocompatible nanoparticles with many potential applications in optoelectronics and biophotonics. Their dual fluorescence bands were observed and could be attributed to core and surface state emission. We also conduct temperature-dependent fluorescence measurements from cryogenic to room temperatures. The dual emission bands exhibit similar temperature dependence. The strong electron–electron interactions and weak electron–phonon interactions could account for the very broad photoluminescence (PL) band even at 77 K. Our experimental results also suggest that carbon dots exhibit similar temperature behavior as metallic quantum dots (nanoclusters) but are different from inorganic semiconductor quantum dots. Here, for the first time, we present the temperature-dependent spectroscopic results to shed some light on the presently unclear fluorescence mechanism.

381 citations

Journal ArticleDOI
TL;DR: In this paper, a metal-free zerodimensional/two-dimensional carbon nanodot (CND)-hybridized protonated g-C3N4 (pCN) (cND/pCN-3) heterojunction photocatalysts were constructed by means of electrostatic attraction.
Abstract: In this work, we demonstrated the successful construction of metal-free zerodimensional/ two-dimensional carbon nanodot (CND)-hybridized protonated g-C3N4 (pCN) (CND/pCN) heterojunction photocatalysts by means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed the highest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. The total amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 μmol·g catalyst −1 , respectively. These values were 3.6 and 2.28 times higher, respectively, than the amounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity. The significant improvement in the photoactivity using CND/pCN-3 was attributed to the synergistic interaction between pCN and CNDs. This synergy allows the effective migration of photoexcited electrons from pCN to CNDs via well-contacted heterojunction interfaces, which retards the charge recombination. This was confirmed by photoelectrochemical measurements, and steady-state and time-resolved photoluminescence analyses. The first-principles density functional theory (DFT) calculations were consistent with our experimental results, and showed that the work function of CNDs (5.56 eV) was larger than that of pCN (4.66 eV). This suggests that the efficient shuttling of electrons from the conduction band of pCN to CNDs hampers the recombination of electron–hole pairs. This significantly increased the probability of free charge carriers reducing CO2 to CH4 and CO. Overall, this study underlines the importance of understanding the charge carrier dynamics of the CND/pCN hybrid nanocomposites, in order to enhance solar energy conversion.

359 citations

Journal ArticleDOI
TL;DR: A stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts is shown, which suggests a new and general method for achieving long-lived hot carriers in materials.
Abstract: The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I-/Br-) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials.

333 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
30 Jun 2017-Science
TL;DR: The introduction of additional iodide ions into the organic cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects, enabling the fabrication of PSCs with a certified power conversion efficiency.
Abstract: The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell’s performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.

4,603 citations

Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations