scispace - formally typeset
Search or ask a question
Author

Xiaona Cui

Bio: Xiaona Cui is an academic researcher from Peking University. The author has contributed to research in topics: Glucagon receptor & Glucagon. The author has an hindex of 3, co-authored 5 publications receiving 24 citations.
Topics: Glucagon receptor, Glucagon, Neogenesis, FOXO1, Islet

Papers
More filters
Journal ArticleDOI
TL;DR: Dapagliflozin enhances beta cell self-replication, induces alpha to beta cell conversion, and promotes duct-derived beta cell neogenesis, and has extra protective effects on beta cells in type 2 diabetes.
Abstract: Background Clinical trials and animal studies have shown that sodium-glucose co-transporter type 2 (SGLT2) inhibitors improve pancreatic beta cell function. Our study aimed to investigate the effect of dapagliflozin on islet morphology and cell phenotype, and explore the origin and possible reason of the regenerated beta cells. Methods Two diabetic mouse models, db/db mice and pancreatic alpha cell lineage-tracing (glucagon-β-gal) mice whose diabetes was induced by high fat diet combined with streptozotocin, were used. Mice were treated by daily intragastric administration of dapagliflozin (1 mg/kg) or vehicle for 6 weeks. The plasma insulin, glucagon and glucagon-like peptide-1 (GLP-1) were determined by using ELISA. The evaluation of islet morphology and cell phenotype was performed with immunofluorescence. Primary rodent islets and αTC1.9, a mouse alpha cell line, were incubated with dapagliflozin (0.25–25 μmol/L) or vehicle in the presence or absence of GLP-1 receptor antagonist for 24 h in regular or high glucose medium. The expression of specific markers and hormone levels were determined. Results Treatment with dapagliflozin significantly decreased blood glucose in the two diabetic models and upregulated plasma insulin and GLP-1 levels in db/db mice. The dapagliflozin treatment increased islet and beta cell numbers in the two diabetic mice. The beta cell proliferation as indicated by C-peptide and BrdU double-positive cells was boosted by dapagliflozin. The alpha to beta cell conversion, as evaluated by glucagon and insulin double-positive cells and confirmed by using alpha cell lineage-tracing, was facilitated by dapagliflozin. After the dapagliflozin treatment, some insulin-positive cells were located in the duct compartment or even co-localized with duct cell markers, suggestive of duct-derived beta cell neogenesis. In cultured primary rodent islets and αTC1.9 cells, dapagliflozin upregulated the expression of pancreatic endocrine progenitor and beta cell specific markers (including Pdx1) under high glucose condition. Moreover, dapagliflozin upregulated the expression of Pcsk1 (which encodes prohormone convertase 1/3, an important enzyme for processing proglucagon to GLP-1), and increased GLP-1 content and secretion in αTC1.9 cells. Importantly, the dapagliflozin-induced upregulation of Pdx1 expression was attenuated by GLP-1 receptor antagonist. Conclusions Except for glucose-lowering effect, dapagliflozin has extra protective effects on beta cells in type 2 diabetes. Dapagliflozin enhances beta cell self-replication, induces alpha to beta cell conversion, and promotes duct-derived beta cell neogenesis. The promoting effects of dapagliflozin on beta cell regeneration may be partially mediated via GLP-1 secreted from alpha cells.

32 citations

Journal ArticleDOI
TL;DR: The elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP -1 production, which may be mediated via GLp-1R/PKA signaling pathways.
Abstract: Objective Glucagon receptor (GCGR) blockage improves glycemic control and increases circulating glucagon-like peptide-1 (GLP-1) level in diabetic animals and humans. The elevated GLP-1 has been reported to be involved in the hypoglycemic effect of GCGR blockage. However, the source of this elevation remains to be clarified. Research design and methods REMD 2.59, a human GCGR monoclonal antibody (mAb), was administrated for 12 weeks in db/db mice and high-fat diet+streptozotocin (HFD/STZ)-induced type 2 diabetic (T2D) mice. Blood glucose, glucose tolerance and plasma GLP-1 were evaluated during the treatment. The gut length, epithelial area, and L-cell number and proliferation were detected after the mice were sacrificed. Cell proliferation and GLP-1 production were measured in mouse L-cell line GLUTag cells, and primary mouse and human enterocytes. Moreover, GLP-1 receptor (GLP-1R) antagonist or protein kinase A (PKA) inhibitor was used in GLUTag cells to determine the involved signaling pathways. Results Treatment with the GCGR mAb lowered blood glucose level, improved glucose tolerance and elevated plasma GLP-1 level in both db/db and HFD/STZ-induced T2D mice. Besides, the treatment promoted L-cell proliferation and LK-cell expansion, and increased the gut length, epithelial area and L-cell number in these two T2D mice. Similarly, our in vitro study showed that the GCGR mAb promoted L-cell proliferation and increased GLP-1 production in GLUTag cells, and primary mouse and human enterocytes. Furthermore, either GLP-1R antagonist or PKA inhibitor diminished the effects of GCGR mAb on L-cell proliferation and GLP-1 production. Conclusions The elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP-1 production, which may be mediated via GLP-1R/PKA signaling pathways. Therefore, GCGR mAb represents a promising strategy to improve glycemic control and restore the impaired GLP-1 production in T2D.

28 citations

Journal ArticleDOI
Liangbiao Gu1, Xiaona Cui1, Shan Lang1, Haining Wang1, Tianpei Hong1, Rui Wei1 
TL;DR: Observations suggest that treatment with the glucagon receptor monoclonal antibody can increase pancreatic δ-cell mass by promoting self-replication and inducing duct-derived neogenesis both in normoglycemia and diabetic mice.

11 citations

Journal ArticleDOI
Jin Feng1, Tianjiao Wei1, Xiaona Cui1, Rui Wei1, Tianpei Hong1 
TL;DR: The hub genes SOX9, CCL20, CXCL1, CD24, and CHST4, which were identified from the dataset, are involved in the aggravation of NAFLD.

5 citations

Journal ArticleDOI
TL;DR: In this article, the effect of liraglutide, GCGR mAb monotherapy, or combined strategy in glucose control and islet β-cell regeneration and provided useful clues for the future clinical application in type 1 diabetes.
Abstract: Pancreatic β-cell neogenesis in vivo holds great promise for cell replacement therapy in diabetic patients, and discovering the relevant clinical therapeutic strategies would push it forward to clinical application. Liraglutide, a widely used antidiabetic glucagon-like peptide-1 (GLP-1) analog, has displayed diverse β-cell-protective effects in type 2 diabetic animals. Glucagon receptor (GCGR) monoclonal antibody (mAb), a preclinical agent that blocks glucagon pathway, can promote recovery of functional β-cell mass in type 1 diabetic mice. Here, we conducted a 4-week treatment of the two drugs alone or in combination in type 1 diabetic mice. Although liraglutide neither lowered the blood glucose level nor increased the plasma insulin level, the immunostaining showed that liraglutide expanded β-cell mass through self-replication, differentiation from precursor cells, and transdifferentiation from pancreatic α cells to β cells. The pancreatic β-cell mass increased more significantly after GCGR mAb treatment, while the combination group did not further increase the pancreatic β-cell area. However, compared with the GCGR mAb group, the combined treatment reduced the plasma glucagon level and increased the proportion of β cells/α cells. Our study evaluated the effect of liraglutide, GCGR mAb monotherapy, or combined strategy in glucose control and islet β-cell regeneration and provided useful clues for the future clinical application in type 1 diabetes.

4 citations


Cited by
More filters
Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of novel targets and mechanisms and focus on glucose-lowering effects guiding this search and developments, and discuss not only novel developments of insulin therapy, but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact.

79 citations

Journal ArticleDOI
TL;DR: The elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP -1 production, which may be mediated via GLp-1R/PKA signaling pathways.
Abstract: Objective Glucagon receptor (GCGR) blockage improves glycemic control and increases circulating glucagon-like peptide-1 (GLP-1) level in diabetic animals and humans. The elevated GLP-1 has been reported to be involved in the hypoglycemic effect of GCGR blockage. However, the source of this elevation remains to be clarified. Research design and methods REMD 2.59, a human GCGR monoclonal antibody (mAb), was administrated for 12 weeks in db/db mice and high-fat diet+streptozotocin (HFD/STZ)-induced type 2 diabetic (T2D) mice. Blood glucose, glucose tolerance and plasma GLP-1 were evaluated during the treatment. The gut length, epithelial area, and L-cell number and proliferation were detected after the mice were sacrificed. Cell proliferation and GLP-1 production were measured in mouse L-cell line GLUTag cells, and primary mouse and human enterocytes. Moreover, GLP-1 receptor (GLP-1R) antagonist or protein kinase A (PKA) inhibitor was used in GLUTag cells to determine the involved signaling pathways. Results Treatment with the GCGR mAb lowered blood glucose level, improved glucose tolerance and elevated plasma GLP-1 level in both db/db and HFD/STZ-induced T2D mice. Besides, the treatment promoted L-cell proliferation and LK-cell expansion, and increased the gut length, epithelial area and L-cell number in these two T2D mice. Similarly, our in vitro study showed that the GCGR mAb promoted L-cell proliferation and increased GLP-1 production in GLUTag cells, and primary mouse and human enterocytes. Furthermore, either GLP-1R antagonist or PKA inhibitor diminished the effects of GCGR mAb on L-cell proliferation and GLP-1 production. Conclusions The elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP-1 production, which may be mediated via GLP-1R/PKA signaling pathways. Therefore, GCGR mAb represents a promising strategy to improve glycemic control and restore the impaired GLP-1 production in T2D.

28 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the antioxidant roles of SGLT2 inhibitors in common but debilitating human diseases is presented, which will guide new research directions and novel therapeutic strategies for diabetes, cardiovascular diseases, nephropathies, liver diseases, neural disorders, and cancers.
Abstract: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral glucose-lowering agents. Apart from their glucose-lowering effects, large clinical trials assessing certain SGLT2 inhibitors have revealed cardiac and renal protective effects in non-diabetic patients. These excellent outcomes motivated scientists and clinical professionals to revisit their underlying mechanisms. In addition to the heart and kidney, redox homeostasis is crucial in several human diseases, including liver diseases, neural disorders, and cancers, with accumulating preclinical studies demonstrating the therapeutic benefits of SGLT2 inhibitors. In the present review, we aimed to update recent advances in the antioxidant roles of SGLT2 inhibitors in common but debilitating human diseases. We anticipate that this review will guide new research directions and novel therapeutic strategies for diabetes, cardiovascular diseases, nephropathies, liver diseases, neural disorders, and cancers in the era of SGLT2 inhibitors.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the patent applications of benzoxazole derivatives within the past six years, using the Lens database, granted patents issued from 2015 to 2020 were retrieved.
Abstract: The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.

23 citations