scispace - formally typeset
Search or ask a question
Author

Xiaonan Xie

Bio: Xiaonan Xie is an academic researcher from Utsunomiya University. The author has contributed to research in topics: Strigolactone & Orobanche. The author has an hindex of 31, co-authored 69 publications receiving 4216 citations. Previous affiliations of Xiaonan Xie include Tokyo University of Agriculture and Technology & Nanjing Agricultural University.


Papers
More filters
Journal ArticleDOI
TL;DR: Strigolactones were originally isolated from plant root exudates as germination stimulants for root parasitic plants of the family Orobanchaceae, but it has been recently shown that SLs or their metabolites are a novel class of plant hormones that inhibit shoot branching.
Abstract: Strigolactones (SLs) were originally isolated from plant root exudates as germination stimulants for root parasitic plants of the family Orobanchaceae, including witchweeds (Striga spp.), broomrapes (Orobanche and Phelipanche spp.), and Alectra spp., and so were regarded as detrimental to the producing plants. Their role as indispensable chemical signals for root colonization by symbiotic arbuscular mycorrhizal fungi was subsequently unveiled, and SLs then became recognized as beneficial plant metabolites. In addition to these functions in the rhizosphere, it has been recently shown that SLs or their metabolites are a novel class of plant hormones that inhibit shoot branching. Furthermore, SLs are suggested to have other biological functions in rhizosphere communications and in plant growth and development.

602 citations

Journal ArticleDOI
08 Aug 2007-Planta
TL;DR: The results suggest that strigolactones may be rapidly released after their production in the roots, as neither N nor P deficiency affected the low content of 5-deoxystrigol in sorghum shoot tissues.
Abstract: Strigolactones released from plant roots induce hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi and germination of root parasitic weeds, Striga and Orobanche spp. We already demonstrated that, in red clover plants (Trifolium pratense L.), a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Ca, Mg) in the culture medium significantly promoted the secretion of a strigolactone, orobanchol, by the roots of this plant. Here we show that in the case of sorghum [Sorghum bicolor (L.) Moench], a host of both the root hemiparasitic plant Striga hermonthica and AM fungi, N deficiency as well as P deficiency markedly enhanced the secretion of a strigolactone, 5-deoxystrigol. The 5-deoxystrigol content in sorghum root tissues also increased under both N deficiency and P deficiency, comparable to the increase in the root exudates. These results suggest that strigolactones may be rapidly released after their production in the roots. Unlike the situation in the roots, neither N nor P deficiency affected the low content of 5-deoxystrigol in sorghum shoot tissues.

351 citations

Journal ArticleDOI
TL;DR: It is shown that CL is converted into a carboxylated metabolite, named carlactonoic acid, byArabidopsis MAX1, the enzymatic function of which had been unknown, and that its methyl ester has the ability to interact with a SL receptor and suppress shoot branching in Arabidopsis.
Abstract: Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.

321 citations

Journal ArticleDOI
01 Jun 2012-Planta
TL;DR: Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation.
Abstract: Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated.

280 citations

Journal ArticleDOI
TL;DR: The regulation of strigolactone production and/or exudation seems to be closely related to the nutrient acquisition strategy of the plants.
Abstract: Summary • Both root parasitic plants and arbuscular mycorrhizal (AM) fungi take advantage of strigolactones, released from plant roots as signal molecules in the initial communication with host plants, in order to commence parasitism and mutualism, respectively. • In this study, strigolactones in root exudates from 12 Fabaceae plants, including hydroponically grown white lupin (Lupinus albus), a nonhost of AM fungi, were characterized by comparing retention times of germination stimulants on reverse-phase high-performance liquid chromatography (HPLC) with those of standards and by using tandem mass spectrometry (LC/MS/MS). • All the plant species examined were found to exude known strigolactones, such as orobanchol, orobanchyl acetate, and 5-deoxystrigol, suggesting that these strigolactones are widely distributed in the Fabaceae. It should be noted that even the nonmycotrophic L. albus exuded orobanchol, orobanchyl acetate, 5-deoxystrigol, and novel germination stimulants. • By contrast to the mycotrophic Fabaceae plant Trifolium pratense, in which phosphorus deficiency promoted strigolactone exudation, neither phosphorus nor nitrogen deficiency increased exudation of these strigolactones in L. albus. Therefore, the regulation of strigolactone production and/or exudation seems to be closely related to the nutrient acquisition strategy of the plants.

270 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
11 Sep 2008-Nature
TL;DR: Evidence is presented that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigOLactone application restores the wild-type branching phenotype to ccd8 mutants, and that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack striglactone response.
Abstract: A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.

1,873 citations

Journal ArticleDOI
11 Sep 2008-Nature
TL;DR: It is proposed that strigolactones act as a new hormone class—or their biosynthetic precursors—in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.
Abstract: Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.

1,742 citations

Journal ArticleDOI
TL;DR: In this paper, the microbial contribution to plant P nutrition and opportunities for manipulating specific microorganisms to enhance P availability in soil has been discussed, as well as the potential for manipulating microorganisms in order to enhance plant P availability.
Abstract: Microorganisms are integral to the soil phosphorus (P) cycle and as such play an important role in mediating the availability of P to plants. Understanding the microbial contribution to plant P nutrition and opportunities for manipulating specific microorganisms to enhance P availability in soil has

974 citations

Journal ArticleDOI
TL;DR: It is highlighted that germination vigor depends on multiple biochemical and molecular variables and their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Abstract: Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using “-omics” approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

787 citations