scispace - formally typeset
Search or ask a question
Author

Xiaoping Wang

Bio: Xiaoping Wang is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Neutron diffraction & Higgs boson. The author has an hindex of 50, co-authored 283 publications receiving 9087 citations. Previous affiliations of Xiaoping Wang include University of Costa Rica & Argonne National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest great promise for FMOFs in applications such as removal of organic pollutants from oil spills or ambient humid air, hydrocarbon storage and transportation, water purification, etc. under practical working conditions.
Abstract: We demonstrate that fluorous metal–organic frameworks (FMOFs) are highly hydrophobic porous materials with a high capacity and affinity to C6–C8 hydrocarbons of oil components. FMOF-1 exhibits reversible adsorption with a high capacity for n-hexane, cyclohexane, benzene, toluene, and p-xylene, with no detectable water adsorption even at near 100% relative humidity, drastically outperforming activated carbon and zeolite porous materials. FMOF-2, obtained from annealing FMOF-1, shows enlarged cages and channels with double toluene adsorption vs FMOF-1 based on crystal structures. The results suggest great promise for FMOFs in applications such as removal of organic pollutants from oil spills or ambient humid air, hydrocarbon storage and transportation, water purification, etc. under practical working conditions.

384 citations

Journal ArticleDOI
TL;DR: In this paper, a solid-oxide fuel cell based on doped ceria electrolytes and operating at 500°C was shown to be feasible and showed that the ionic conductivity of ceria-based fuel cells is sufficiently high for operation with hydrogen fuel at low temperatures.
Abstract: Solid‐oxide fuel cells based on doped ceria electrolytes and operating at 500°C are shown to be feasible. The operating regime of doped ceria electrolytes is discussed. It is shown that the ionic conductivity of ceria‐based fuel cells is sufficiently high for operation with hydrogen fuel at low temperatures. The major challenges of fabricating a thin electrolyte by a conventional method and the development of high‐performance cathodes capable of operating at 500–600°C are addressed. Cells based on thin‐film ceria electrolytes also exhibited good open‐circuit voltages between 0.97 and 1 V. Cathode materials with high performance have been developed from pyrochlores, perovskites, and cermets of silver and doped bismuth oxide. The advantages and disadvantages of different cathode materials are discussed. The maximum power density obtained at 500°C was . © 1999 The Electrochemical Society. All rights reserved.

375 citations

Journal ArticleDOI
TL;DR: A fluorous metal−organic framework, FMOF-1, is obtained by reaction of Ag(I) with 3,5-bis(trifluoromethyl)-1,2,4-triazolate, giving rise to a neutral, hydrogen-free, extended 3D nanotubular porous framework consisting of tetranuclear clusters connected by three-coordinate Ag( I) centers.
Abstract: A fluorous metal−organic framework, FMOF-1, is obtained by reaction of Ag(I) with 3,5-bis(trifluoromethyl)-1,2,4-triazolate, giving rise to a neutral, hydrogen-free, extended 3D nanotubular porous framework consisting of tetranuclear clusters [Ag4Tz6] connected by three-coordinate Ag(I) centers. The fluoro-lined channels and cavities of the framework show hysteretic adsorption of H2 with a volumetric capacity of 41 kg/m3 at 77 K and 64 bar. The framework also exhibits very high adsorptions for O2 and N2 with volumetric uptake of ∼550 and 400 kg/m3 at 77 K even at very low pressures (<10-2 bar).

315 citations

Journal ArticleDOI
TL;DR: In this paper, two isostructural microporous metal−organic frameworks, namely, Cu2(abtc)(H2O)2·3DMA (PCN-10, abtc = azobenzene-3,3′,5,5′-tetracarboxylate) and Cu 2(sbtc)(H 2O)(Sbtc), sbtc = trans-stilbene-
Abstract: Solvothermal reactions of Cu(NO3)2 with azoxybenzene-3,3′,5,5′-tetracarboxylic acid (H4aobtc) or trans-stilbene-3,3′,5,5′-tetracarboxylic acid (H4sbtc) give rise to two isostructural microporous metal−organic frameworks, Cu2(abtc)(H2O)2·3DMA (PCN-10, abtc = azobenzene-3,3′,5,5′-tetracarboxylate) and Cu2(sbtc)(H2O)2·3DMA (PCN-11, sbtc = trans-stilbene-3,3′,5,5′-tetracarboxylate), respectively. Both PCN-10 and PCN-11 possess significant enduring porosity with Langmuir surface areas of 1779 and 2442 m2/g (corresponding to BET surface areas of 1407 or 1931 m2/g, respectively) and contain nanoscopic cages and coordinatively unsaturated metal centers. At 77 K, 760 Torr, the excess gravimetric (volumetric) hydrogen uptake of PCN-10 is 2.34 wt % (18.0 g/L) and that of PCN-11 can reach 2.55 wt % (19.1 g/L). Gas-adsorption studies also suggest that MOFs containing C═C double bonds are more favorable than those with N═N double bond in retaining enduring porosity after thermal activation, although N═N has slightly hi...

251 citations

Journal ArticleDOI
Juliette Alimena1, James Baker Beacham2, Martino Borsato3, Yangyang Cheng4  +213 moreInstitutions (105)
TL;DR: In this paper, the authors present a survey of the current state of LLP searches at the Large Hadron Collider (LHC) and chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC.
Abstract: Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.

218 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: Recent progress in the search and development of innovative alternative materials in the development of fuel-cell stack is summarized.
Abstract: Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.

6,938 citations

Journal ArticleDOI
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

6,252 citations