scispace - formally typeset
Search or ask a question
Author

Xiaoqing Wang

Bio: Xiaoqing Wang is an academic researcher from Chinese PLA General Hospital. The author has contributed to research in topics: Self-healing hydrogels & Drug delivery. The author has an hindex of 8, co-authored 9 publications receiving 688 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In vivo performances of drug nanocrystals exhibited in animals in different administration route were reviewed, and the advantages of drug Nanocrystals in the aspect of safety, pharmacodynamics, pharmacokinetics and targeting delivery were discussed in detail.

280 citations

Journal ArticleDOI
TL;DR: The in vivo performances of oral drug nanocrystals exhibited in animals related to the pharmacokinetic, efficacy and safety characteristics were described and the technologies and evaluation associated with the solidification process of the drug Nanocrystals suspensions were discussed in detail.
Abstract: The limited solubility and dissolution rate exhibited by poorly soluble drugs is major challenges in the pharmaceutical process. Following oral administration, the poorly soluble drugs generally show a low and erratic bioavailability which may lead to therapeutic failure. Pure drug nanocrystals, generated by “bottom up” or “top down” technologies, facilitate a significant improvement on dissolution behavior of poorly soluble drugs due to their enormous surface area, which in turn lead to substantial improvement in oral absorption. This is the most distinguished achievement of drug nanocrystals among their performances in various administration routes, reflected by the fact that most of the marketed products based on the nanocrystals technology are for oral application. After detailed investigations on various technologies associated with production of drug nanocrystals and their in vitro physicochemical properties, during the last decade more attentions have been paid into their in vivo behaviors. This review mainly describes the in vivo performances of oral drug nanocrystals exhibited in animals related to the pharmacokinetic, efficacy and safety characteristics. The technologies and evaluation associated with the solidification process of the drug nanocrystals suspensions were also discussed in detail.

175 citations

Journal ArticleDOI
TL;DR: The EPAS and HPH techniques were feasible to prepare a chemically stable QCT nanosuspension with significantly enhanced dissolution rate and the high performance liquid chromatography analysis proved the superiority of both nanos Suspension over QCT solution formulation for the chemical and photo-stability.

166 citations

Journal ArticleDOI
TL;DR: The mucoadhesive polymers have enormous potential for the delivery of therapeutic macromolecules, genes, and vaccines through the nasal cavity with high drug bioavailability.
Abstract: Background: Over the last decades, the application of mucoadhesive polymers in nasal drug delivery systems has gained interest among pharmaceutical scientists as a means of promoting dosage form residence time in the nasal cavity as well as improving intimacy of contact with absorptive membranes of the biological system. In addition, the enhanced paracellular absorption following the swelling of the mucoadhesive polymers on the nasal membranes provides an important way for the absorption of the macromolecules through the nasal cavity. Method: This paper describes some aspects of mucoadhesion related to the nasal drug delivery system. First the theories of the adhesion of mucoadhesive polymers to the mucosa epithelium are described. Then the characteristics and application of several widely used polymers in nasal drug delivery are presented. Finally, the influences of dosage form on the nasal absorption of drugs in the mucoadhesive polymer-based formulations are discussed. Conclusion: The mucoadhesive poly...

51 citations

Journal ArticleDOI
TL;DR: The paclitaxel nanosuspensions prepared in this study could markedly enhance the tolerance dosage in mice, and manifest different pharmacokinetic properties compared with the solution.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology where required.
Abstract: Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.

1,201 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercET were discussed, including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation.
Abstract: Background Quercetin, one of the most well-known flavonoids, has been included in human diet for a long history. The use of quercetin has been widely associated with a great number of health benefits, including antioxidant, anti-inflammatory, antiviral and anticancer as well as the function to ease some cardiovascular diseases (i.e., heart disease, hypertension, and high blood cholesterol). However, poor water solubility, chemical instability and low bioavailability of quercetin greatly limit its applications. Utilization of delivery systems can improve its stability, efficacy and bioavailability. Scope and approach In this review, biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercetin were discussed. Key findings and conclusions Quercetin digested in human body (e.g., mouth, small intestine, liver, kidneys) undergoes glucuronidation, sulfation or methylation. During the food processing and storage, many factors such as heat, pH, metal ions, could affect the chemical stability (including oxidation and degradation) of quercetin. Utilization of delivery systems including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation has the potential to improve both the stability and bioavailability and thus health benefits of quercetin. Each delivery system has its unique advantages and shortcomings, and the specific selection should be based on the application domains. Moreover, the exploration of natural food-grade ingredients as main compositions of delivery systems for quercetin might be required in the future.

460 citations

Journal Article
TL;DR: Expectations regarding nanodrugs that are in early stages of development or clinical trials need to remain realistic because of the need for better characterization and the lack of specific regulatory guidelines.
Abstract: Nanomedicine is a relatively new and rapidly evolving field combining nanotechnology with the biomedical and pharmaceutical sciences.1-3 Nanoparticles (NPs) can impart many pharmacokinetic, efficacy, safety, and targeting benefits when they are included in drug formulations.1-5 Many nanodrugs have entered clinical practice, and even more are being investigated in clinical trials for a wide variety of indications.2 However, nanopharmaceuticals also face challenges, such as the need for better characterization, possible toxicity issues, a lack of specific regulatory guidelines, cost-benefit considerations, and waning enthusiasm among some health care professionals. 4,5 For these reasons, expectations regarding nanodrugs that are in early stages of development or clinical trials need to remain realistic.4.

453 citations

Journal ArticleDOI
Kinam Park1
24 Sep 2013-ACS Nano
TL;DR: Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release.
Abstract: Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targeted drug delivery to tumors. Numerous nanoparticle formulations have been designed and tested to great effect in small animal models, but the translation of the small animal results to clinical success has been limited. Successful translation requires revisiting the meaning of nanotechnology in drug delivery, understanding the limitations of nanoparticles, identifying the misconceptions pervasive in the field, and facing inconvenient truths. Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release.

440 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive summary of the recent advances in carrier-assistant drug delivery systems for cancer therapy and emphatically discusses some representative achievements of these DSDSs for passive or/and positive targeting therapy, combinational therapy as well as theranostics.

396 citations