scispace - formally typeset
Search or ask a question
Author

Xiaowei Jia

Bio: Xiaowei Jia is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Computer science & Deep learning. The author has an hindex of 16, co-authored 72 publications receiving 811 citations. Previous affiliations of Xiaowei Jia include University at Buffalo & Adobe Systems.

Papers published on a yearly basis

Papers
More filters
Posted Content
01 Jan 2020
TL;DR: An overview of techniques to integrate machine learning with physics-based modeling and classes of methodologies used to construct physics-guided machine learning models and hybrid physics-machine learning frameworks from a machine learning standpoint is provided.
Abstract: In this manuscript, we provide a structured and comprehensive overview of techniques to integrate machine learning with physics-based modeling. First, we provide a summary of application areas for which these approaches have been applied. Then, we describe classes of methodologies used to construct physics-guided machine learning models and hybrid physics-machine learning frameworks from a machine learning standpoint. With this foundation, we then provide a systematic organization of these existing techniques and discuss ideas for future research.

230 citations

Book ChapterDOI
31 Jan 2019
TL;DR: It is shown that a PGRNN can improve prediction accuracy over that of physical models, while generating outputs consistent with physical laws, and achieving good generalizability.
Abstract: This paper proposes a physics-guided recurrent neural network model (PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and improve the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction accuracy over that of physical models, while generating outputs consistent with physical laws, and achieving good generalizability. Standard RNNs, even when producing superior prediction accuracy, often produce physically inconsistent results and lack generalizability. We further enhance this approach by using a pre-training method that leverages the simulated data from a physics-based model to address the scarcity of observed data. The PGRNN has the flexibility to incorporate additional physical constraints and we incorporate a density-depth relationship. Both enhancements further improve PGRNN performance. Although we present and evaluate this methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely to a range of scientific and engineering disciplines where mechanistic (also known as process-based) models are used, e.g., power engineering, climate science, materials science, computational chemistry, and biomedicine.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of the North Central Climate Adaptation Science Center (NCAACS) at the University of Minnesota (U.M. System) with the help of the National Science Foundation (NSF).
Abstract: Department of the Interior Northeast Climate Adaptation Science Center; Midwest Glacial Lakes Fish Habitat Partnership grant through FWS; NSF Expedition in Computing Grant [1029711]; NSFNational Science Foundation (NSF) [EAR-PF-1725386]; Digital Technology Center at the University of MinnesotaUniversity of Minnesota System; Department of the Interior North Central Climate Adaptation Science Center; North Temperate Lakes Long-Term Ecological Research [NSF DEB-1440297]; Global Lake Ecological Observatory Network [NSF 1702991]

188 citations

Journal ArticleDOI
TL;DR: This survey aims at providing a structured and comprehensive overview of the research on context learning by summarized and group the existing literature into four categories, Explicit Analysis, Implicit Analysis, Neural Network Models, and Composite Models, based on the underlying techniques adopted by them.
Abstract: Learning semantics based on context information has been researched in many research areas for decades. Context information can not only be directly used as the input data, but also sometimes used as auxiliary knowledge to improve existing models. This survey aims at providing a structured and comprehensive overview of the research on context learning. We summarize and group the existing literature into four categories, Explicit Analysis, Implicit Analysis, Neural Network Models, and Composite Models, based on the underlying techniques adopted by them. For each category, we talk about the basic idea and techniques, and also introduce how context information is utilized as the model input or incorporated into the model to enhance the performance or extend the domain of application as auxiliary knowledge. In addition, we discuss the advantages and disadvantages of each model from both the technical and practical point of view.

104 citations

Proceedings ArticleDOI
10 Nov 2014
TL;DR: This work comes up with a novel semi-supervised deep structured framework that is more adapted to the EEG classification problem and extends it to the active learning scenario, which solves the costly labeling problem.
Abstract: Nowadays the rapid development in the area of human-computer interaction has given birth to a growing interest on detecting different affective states through smart devices. By using the modern sensor equipment, we can easily collect electroencephalogram (EEG) signals, which capture the information from central nervous system and are closely related with our brain activities. Through the training on EEG signals, we can make reasonable analysis on people's affection, which is very promising in various areas. Unfortunately, the special properties of EEG dataset have brought difficulties for conventional machine learning methods. The main reasons lie in two aspects: the small set of labeled samples and the noisy channel problem. To overcome these difficulties and successfully identify the affective states, we come up with a novel semi-supervised deep structured framework. Compared with previous deep learning models, our method is more adapted to the EEG classification problem. We first adopt a two-level procedure, which involves both supervised label information and unsupervised structure information to jointly make decision on channel selection. And then, we add a generative Restricted Boltzmann Machine (RBM) model for the classification task, and use the training objectives of generative learning and unsupervised learning to jointly regularize the discriminative training. Finally, we extend it to the active learning scenario, which solves the costly labeling problem. The experiments conducted on real EEG dataset have shown both the convincing result on critical channel selection and the superiority of our method over multiple baselines for the affective state recognition.

102 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: A comprehensive up-to-date review of research employing deep learning in health informatics is presented, providing a critical analysis of the relative merit, and potential pitfalls of the technique as well as its future outlook.
Abstract: With a massive influx of multimodality data, the role of data analytics in health informatics has grown rapidly in the last decade. This has also prompted increasing interests in the generation of analytical, data driven models based on machine learning in health informatics. Deep learning, a technique with its foundation in artificial neural networks, is emerging in recent years as a powerful tool for machine learning, promising to reshape the future of artificial intelligence. Rapid improvements in computational power, fast data storage, and parallelization have also contributed to the rapid uptake of the technology in addition to its predictive power and ability to generate automatically optimized high-level features and semantic interpretation from the input data. This article presents a comprehensive up-to-date review of research employing deep learning in health informatics, providing a critical analysis of the relative merit, and potential pitfalls of the technique as well as its future outlook. The paper mainly focuses on key applications of deep learning in the fields of translational bioinformatics, medical imaging, pervasive sensing, medical informatics, and public health.

1,367 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent research efforts on deep learning-based recommender systems is provided in this paper, along with a comprehensive summary of the state-of-the-art.
Abstract: With the growing volume of online information, recommender systems have been an effective strategy to overcome information overload. The utility of recommender systems cannot be overstated, given their widespread adoption in many web applications, along with their potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also to the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. The field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning-based recommender systems. More concretely, we provide and devise a taxonomy of deep learning-based recommendation models, along with a comprehensive summary of the state of the art. Finally, we expand on current trends and provide new perspectives pertaining to this new and exciting development of the field.

1,070 citations

Journal ArticleDOI
TL;DR: Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields, including bioinformatics as discussed by the authors, which has been emphasized in both academia and industry.
Abstract: In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.

1,010 citations