scispace - formally typeset
Search or ask a question
Author

Xiaowen Chu

Bio: Xiaowen Chu is an academic researcher from Hong Kong Baptist University. The author has contributed to research in topics: Deep learning & Computer science. The author has an hindex of 39, co-authored 255 publications receiving 5776 citations. Previous affiliations of Xiaowen Chu include Hangzhou Dianzi University & Hang Seng Management College.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML methods according to the pipeline, covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS).
Abstract: Deep learning (DL) techniques have obtained remarkable achievements on various tasks, such as image recognition, object detection, and language modeling. However, building a high-quality DL system for a specific task highly relies on human expertise, hindering its wide application. Meanwhile, automated machine learning (AutoML) is a promising solution for building a DL system without human assistance and is being extensively studied. This paper presents a comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML. According to the DL pipeline, we introduce AutoML methods – covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS) – with a particular focus on NAS, as it is currently a hot sub-topic of AutoML. We summarize the representative NAS algorithms’ performance on the CIFAR-10 and ImageNet datasets and further discuss the following subjects of NAS methods: one/two-stage NAS, one-shot NAS, joint hyperparameter and architecture optimization, and resource-aware NAS. Finally, we discuss some open problems related to the existing AutoML methods for future research.

809 citations

Journal Article
TL;DR: This work builds a highly scalable deep learning training system for dense GPU clusters with three main contributions: a mixed-precision training method that significantly improves the training throughput of a single GPU without losing accuracy, an optimization approach for extremely large mini-batch size that can train CNN models on the ImageNet dataset without lost accuracy, and highly optimized all-reduce algorithms.
Abstract: Synchronized stochastic gradient descent (SGD) optimizers with data parallelism are widely used in training large-scale deep neural networks. Although using larger mini-batch sizes can improve the system scalability by reducing the communication-to-computation ratio, it may hurt the generalization ability of the models. To this end, we build a highly scalable deep learning training system for dense GPU clusters with three main contributions: (1) We propose a mixed-precision training method that significantly improves the training throughput of a single GPU without losing accuracy. (2) We propose an optimization approach for extremely large mini-batch size (up to 64k) that can train CNN models on the ImageNet dataset without losing accuracy. (3) We propose highly optimized all-reduce algorithms that achieve up to 3x and 11x speedup on AlexNet and ResNet-50 respectively than NCCL-based training on a cluster with 1024 Tesla P40 GPUs. On training ResNet-50 with 90 epochs, the state-of-the-art GPU-based system with 1024 Tesla P100 GPUs spent 15 minutes and achieved 74.9\% top-1 test accuracy, and another KNL-based system with 2048 Intel KNLs spent 20 minutes and achieved 75.4\% accuracy. Our training system can achieve 75.8\% top-1 test accuracy in only 6.6 minutes using 2048 Tesla P40 GPUs. When training AlexNet with 95 epochs, our system can achieve 58.7\% top-1 test accuracy within 4 minutes, which also outperforms all other existing systems.

343 citations

Journal ArticleDOI
TL;DR: In this article, the authors formulated the EV charging station placement problem (EVCSPP) and proved that the problem is non-deterministic polynomial-time hard, and proposed four solution methods to tackle it.
Abstract: To enhance environmental sustainability, many countries will electrify their transportation systems in their future smart city plans, so the number of electric vehicles (EVs) running in a city will grow significantly. There are many ways to recharge EVs' batteries and charging stations will be considered as the main source of energy. The locations of charging stations are critical; they should not only be pervasive enough such that an EV anywhere can easily access a charging station within its driving range, but also widely spread so that EVs can cruise around the whole city upon being recharged. Based on these new perspectives, we formulate the EV charging station placement problem (EVCSPP) in this paper. We prove that the problem is nondeterministic polynomial-time hard. We also propose four solution methods to tackle EVCSPP, and evaluate their performance on various artificial and practical cases. As verified by the simulation results, the methods have their own characteristics and they are suitable for different situations depending on the requirements for solution quality, algorithmic efficiency, problem size, nature of the algorithm, and existence of system prerequisite.

307 citations

Journal ArticleDOI
TL;DR: It is proved that the EV charging station placement problem is nondeterministic polynomial-time hard and four solution methods are proposed to tackle EVCSPP, and their performance on various artificial and practical cases are evaluated.
Abstract: To enhance environmental sustainability, many countries will electrify their transportation systems in their future smart city plans. So the number of electric vehicles (EVs) running in a city will grow significantly. There are many ways to re-charge EVs' batteries and charging stations will be considered as the main source of energy. The locations of charging stations are critical; they should not only be pervasive enough such that an EV anywhere can easily access a charging station within its driving range, but also widely spread so that EVs can cruise around the whole city upon being re-charged. Based on these new perspectives, we formulate the Electric Vehicle Charging Station Placement Problem (EVCSPP) in this paper. We prove that the problem is non-deterministic polynomial-time hard. We also propose four solution methods to tackle EVCSPP and evaluate their performance on various artificial and practical cases. As verified by the simulation results, the methods have their own characteristics and they are suitable for different situations depending on the requirements for solution quality, algorithmic efficiency, problem size, nature of the algorithm, and existence of system prerequisite.

271 citations

Journal ArticleDOI
TL;DR: SOAP3 is the first short read alignment tool that leverages the multi-processors in a graphic processing unit (GPU) to achieve a drastic improvement in speed and aligns slightly more reads than BWA and Bowtie.
Abstract: SOAP3 is the first short read alignment tool that leverages the multi-processors in a graphic processing unit (GPU) to achieve a drastic improvement in speed. We adapted the compressed full-text index (BWT) used by SOAP2 in view of the advantages and disadvantages of GPU. When tested with millions of Illumina Hiseq 2000 length-100 bp reads, SOAP3 takes < 30 s to align a million read pairs onto the human reference genome and is at least 7.5 and 20 times faster than BWA and Bowtie, respectively. For aligning reads with up to four mismatches, SOAP3 aligns slightly more reads than BWA and Bowtie; this is because SOAP3, unlike BWA and Bowtie, is not heuristic-based and always reports all answers.

251 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The main target of Gctf is to maximize the cross-correlation of a simulated CTF with the logarithmic amplitude spectra of observed micrographs after background subtraction to improve CTF parameters of all particles for subsequent image processing.

2,919 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations