scispace - formally typeset
Search or ask a question
Author

Xiaoxin Chen

Bio: Xiaoxin Chen is an academic researcher from North Carolina Central University. The author has contributed to research in topics: Esophagus & Barrett's esophagus. The author has an hindex of 34, co-authored 68 publications receiving 3554 citations. Previous affiliations of Xiaoxin Chen include Capital Medical University & Central University, India.


Papers
More filters
Journal ArticleDOI
TL;DR: Curcumin affects arachidonic acid metabolism by blocking the phosphorylation of cPLA(2), decreasing the expression of COX-2 and inhibiting the catalytic activities of 5-LOX, which may contribute to the anti-inflammatory and anticarcinogenic actions of curcumin and its analogs.
Abstract: Aberrant arachidonic acid metabolism is involved in the inflammatory and carcinogenic processes. In this study, we investigated the effects of curcumin, a naturally occurring chemopreventive agent, and related beta-diketone derivatives on the release of arachidonic acid and its metabolites in the murine macrophage RAW264.7 cells and in HT-29 human colon cancer cells. We also examined their effects on the catalytic activities and protein levels of related enzymes: cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenases (COX) as well as 5-lipoxygenase (5-LOX). At 10 micro M, dibenzoylmethane (DBM), trimethoxydibenzoylmethane (TDM), tetrahydrocurcumin (THC) and curcumin effectively inhibited the release of arachidonic acid and its metabolites in lipopolysaccharide (LPS)-stimulated RAW cells and A23187-stimulated HT-29 cells. Inhibition of phosphorylation of cPLA(2), the activation process of this enzyme, rather than direct inhibition of cPLA(2) activity appears to be involved in the effect of curcumin. All the curcuminoids (10 micro M) potently inhibited the formation of prostaglandin E(2) (PGE(2)) in LPS-stimulated RAW cells. Curcumin (20 micro M) significantly inhibited LPS-induced COX-2 expression; this effect, rather than the catalytic inhibition of COX, may contribute to the decreased PGE(2) formation. Without LPS-stimulation, however, curcumin increased the COX-2 level in the macrophage cells. Studies with isolated ovine COX-1 and COX-2 enzymes showed that the curcuminoids had significantly higher inhibitory effects on the peroxidase activity of COX-1 than that of COX-2. Curcumin and THC potently inhibited the activity of human recombinant 5-LOX, showing estimated IC(50) values of 0.7 and 3 micro M, respectively. The results suggest that curcumin affects arachidonic acid metabolism by blocking the phosphorylation of cPLA(2), decreasing the expression of COX-2 and inhibiting the catalytic activities of 5-LOX. These activities may contribute to the anti-inflammatory and anticarcinogenic actions of curcumin and its analogs.

424 citations

Journal ArticleDOI
TL;DR: It is suggested that green tea and curcumin had inhibitory effects against oral carcinogenesis at the post-initiation stage and such inhibition may be related to the suppression of cell proliferation, induction of apoptosis and inhibition of angiogenesis.
Abstract: Tea is one of the most popular beverages consumed in the world. Curcumin, the major yellow pigment in turmeric, is used widely as a spice and food-coloring agent. In this study, we studied the effects of tea and curcumin on 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters. DMBA solution (0.5% in mineral oil, 0.1 ml) was applied topically to the left cheek pouch of male Syrian golden hamsters 3 times/week for 6 weeks. Two days after the last treatment of DMBA, the animals received green tea (6 mg tea solids/ml) as drinking fluid, or 10 mmol curcumin applied topically 3 times/week, or the combination of green tea and curcumin treatment, or no treatment for 18 weeks. The combination of tea and curcumin significantly decreased the oral visible tumor incidence from 92.3% (24/26) to 69.2% (18/26) and the squamous cell carcinoma (SCC) incidence from 76.9% (20/26) to 42.3% (11/26). The combination of tea and curcumin also decreased the number of visible tumors and the tumor volume by 52.4 and 69.8%, as well as the numbers of SCC, dysplasic lesions and papillomas by 62.0, 37.5 and 48.7%, respectively. Green tea or curcumin treatment decreased the number of visible tumors by 35.1 or 39.6%, the tumor volume by 41.6 or 61.3% and the number of SCC by 53.3 or 51.3%, respectively. Green tea also decreased the number of dysplasic lesions. Curcumin also significantly decreased the SCC incidence. Tea and curcumin, singly or in combination, decreased the proliferation index in hyperplasia, dysplasia and papillomas. Only the combination treatment decreased the proliferation index in SCC. Tea alone and in combination with curcumin significantly increased the apoptotic index in dysplasia and SCC. Curcumin, alone and in combination with tea, significantly inhibited the angiogenesis in papilloma and SCC. The results suggested that green tea and curcumin had inhibitory effects against oral carcinogenesis at the post-initiation stage and such inhibition may be related to the suppression of cell proliferation, induction of apoptosis and inhibition of angiogenesis.

211 citations

Journal ArticleDOI
TL;DR: It is proposed that the pathogenesis of EAC is mainly driven by inflammation and oxidative stress, which are augmented by iron overload, and antioxidants, inhibitors of arachidonic acid metabolism enzymes and receptor antagonists of certain eicosanoids are proposed as potential chemopreventive agents for EAC in future studies.
Abstract: The incidence rate of esophageal adenocarcinoma (EAC) has increased sharply in the past 30 years. Many risk factors have been identified and gastroesophageal reflux disease (GERD) is the most important one. Columnar-lined esophagus, resulting from GERD, is recognized as a key precursor lesion of EAC. In this article, we review the studies on EAC in humans and animal models. We propose that the pathogenesis of EAC is mainly driven by inflammation and oxidative stress, which are augmented by iron overload. The overproduction of prostaglandin E2 and leukotriene B4 and overexpression of their receptors are believed to be major factors in exacerbating inflammation and oxidative stress. Based on this mechanistic understanding, antioxidants, inhibitors of arachidonic acid metabolism enzymes and receptor antagonists of certain eicosanoids are proposed as potential chemopreventive agents for EAC in future studies.

175 citations

Journal ArticleDOI
TL;DR: It is suggested that exposure to acid and/or bile acids may activate Cdx2 expression in human esophageal epithelial cells through promoter demethylation, and ectopic Cdx 2 expression in esophagal squamous epithel cells may contribute to intestinal metaplasia of the esophagus.
Abstract: Caudal-related homeobox 2 (Cdx2) has been suggested as an early marker of Barrett's esophagus (BE), which is the premalignant lesion of esophageal adenocarcinoma (EAC). However, the mechanism of ectopic Cdx2 expression in the esophageal epithelial cells and its role in the development of BE remained unclear. RT-PCR, pyrosequencing and methylation-specific PCR were used to determine expression and promoter methylation of Cdx2 in human esophageal epithelial cells (HET1A and SEG1) after treatment with 5-aza-2'-deoxycytidine (DAC), acid, bile acids and their combination. HET1A cells with stable transfection of Cdx2 were characterized for morphology and gene expression profiles with Affymetrix array. We found Cdx2 was expressed in most human EAC cell lines, but not in squamous epithelial cell lines. DAC-induced demethylation and expression of Cdx2 in HET1A and SEG1 cells, and treatment with a DNA methylating agent counteracted the effect of DAC. Treatment of HET1A and SEG1 cells with acid, bile acids or both also resulted in promoter demethylation and expression of Cdx2. HET1A cells with stable transfection of human Cdx2 formed crypt-like structures in vitro. Microarray analysis and quantitative real-time PCR showed that stable transfection of Cdx2 up-regulated differentiation markers of intestinal columnar epithelial cells and goblet cells in HET1A cells. This may be partially due to modulation of Notch signaling pathway, as western blotting confirmed down-regulation of Hes1 and up-regulation of Atoh1 and Muc2. Our data suggest that exposure to acid and/or bile acids may activate Cdx2 expression in human esophageal epithelial cells through promoter demethylation, and ectopic Cdx2 expression in esophageal squamous epithelial cells may contribute to intestinal metaplasia of the esophagus.

164 citations

Journal ArticleDOI
TL;DR: It is proposed that oxidative damage plays an important role in the formation of EAC in the EDA model, and a similar situation may occur in humans with gastroesophageal reflux and iron over-nutrition.
Abstract: Oxidative damage has long been related to carcinogenesis in human cancers and animal cancer models. Recently a rat esophageal adenocarcinoma (EAC) model was established in our laboratory by using esophagoduodenal anastomosis (EDA) plus iron supplementation. Our previous study suggested that iron supplementation enhanced inflammation and the production of reactive nitrogen species in the esophageal epithelium, which could contribute to esophageal adenocarcinogenesis. Here we further characterized oxidative damage in this model. We were particularly interested in how excess iron was deposited in the esophagus, and which cells were targeted by oxidative damage. Male Sprague-Dawley rats received iron supplementation (50 mg Fe/kg/month, i.p.) starting 4 weeks after EDA. The animals were killed at 11, 30 or 35 weeks after surgery. EAC appeared as early as week 11 after surgery, and increased over time, up to 60% at 35 weeks after surgery. All EACs were well-differentiated mucinous adenocarcinoma at the squamocolumnar junction. Iron deposition was found at the squamocolumnar junction and in the area with esophagitis. Esophageal iron overload could result from transient increase of blood iron after i.p. injection, and the overexpression of transferrin receptor in the premalignant columnar-lined esophagus (CLE) cells. Oxidative damage to DNA (8-hydroxy-2'-deoxyguanosine), protein (carbonyl content) and lipid (thiobarbituric acid reactive substance) in the esophagus was significantly higher than that of the non-operated control. CLE cells were believed to be the target cells of oxidative damage because they overexpressed heme oxygenase 1 and metallothionein, both known to be responsive to oxidative damage. We propose that oxidative damage plays an important role in the formation of EAC in the EDA model, and a similar situation may occur in humans with gastroesophageal reflux and iron over-nutrition.

150 citations


Cited by
More filters
Journal Article
TL;DR: Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis, and Pharmacologically,Curcumin has been found to be safe.
Abstract: Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF- κB, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. Curcumin, derived from turmeric (vernacular name: Haldi), is a rhizome of the plant Curcuma longa. The medicinal use of this plant has been documented in Ayurveda (the Indian

2,453 citations

Journal ArticleDOI
TL;DR: A new conceptual definition is proposed highlighting that EoE represents a chronic, immune/antigen-mediated disease characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation.
Abstract: Eosinophilic esophagitis (EoE) is a clinicopathologic condition of increasing recognition and prevalence. In 2007, a consensus recommendation provided clinical and histopathologic guidance for the diagnosis and treatment of EoE; however, only a minority of physicians use the 2007 guidelines, which require fulfillment of both histologic and clinical features. Since 2007, the number of EoE publications has doubled, providing new disease insight. Accordingly, a panel of 33 physicians with expertise in pediatric and adult allergy/immunology, gastroenterology, and pathology conducted a systematic review of the EoE literature (since September 2006) using electronic databases. Based on the literature review and expertise of the panel, information and recommendations were provided in each of the following areas of EoE: diagnostics, genetics, allergy testing, therapeutics, and disease complications. Because accumulating animal and human data have provided evidence that EoE appears to be an antigen-driven immunologic process that involves multiple pathogenic pathways, a new conceptual definition is proposed highlighting that EoE represents a chronic, immune/antigen-mediated disease characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation. The diagnostic guidelines continue to define EoE as an isolated chronic disorder of the esophagus diagnosed by the need of both clinical and pathologic features. Patients commonly have high rates of concurrent allergic diatheses, especially food sensitization, compared with the general population. Proved therapeutic options include chronic dietary elimination, topical corticosteroids, and esophageal dilation. Important additions since 2007 include genetic underpinnings that implicate EoE susceptibility caused by polymorphisms in the thymic stromal lymphopoietin protein gene and the description of a new potential disease phenotype, proton pump inhibitor-responsive esophageal eosinophila. Further advances and controversies regarding diagnostic methods, surrogate disease markers, allergy testing, and treatment approaches are discussed.

1,675 citations

Journal ArticleDOI
TL;DR: Evidence is presented that numerous agents identified from fruits and vegetables can interfere with several cell-signaling pathways and the active principle identified in fruit and vegetables and the molecular targets modulated may be the basis for how these dietary agents not only prevent but also treat cancer and other diseases.

1,653 citations

Journal ArticleDOI
TL;DR: Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved and highlights the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.
Abstract: Free radicals are ubiquitous in our body and are generated by normal physiological processes, including aerobic metabolism and inflammatory responses, to eliminate invading pathogenic microorganisms. Because free radicals can also inflict cellular damage, several defences have evolved both to protect our cells from radicals--such as antioxidant scavengers and enzymes--and to repair DNA damage. Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved. In particular, we highlight the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.

1,619 citations

Journal ArticleDOI
TL;DR: Sufficient data currently exist to advocate phase II clinical evaluation of oral curcumin in patients with invasive malignancy or pre-invasive lesions of the gastrointestinal tract, particularly the colon and rectum.

1,574 citations