scispace - formally typeset
Search or ask a question
Author

Xiaoyan Wu

Other affiliations: South China Normal University
Bio: Xiaoyan Wu is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Diffusion MRI & Subcutaneous emphysema. The author has an hindex of 4, co-authored 10 publications receiving 48 citations. Previous affiliations of Xiaoyan Wu include South China Normal University.

Papers
More filters
Journal ArticleDOI
TL;DR: A texture parameter of pretreatment CE-T1WI-based uniformity improves the prediction of PFS in NPC patients, suggesting a better predictive ability for PFS than the tumour volume or the overall stage alone.
Abstract: To determine the predictive value of pretreatment MRI texture analysis for progression-free survival (PFS) in patients with primary nasopharyngeal carcinoma (NPC). Ethical approval by the institutional review board was obtained for this retrospective analysis. In 79 patients with primary NPC, texture analysis of the primary tumour was performed on pretreatment T2 and contrast-enhanced T1-weighted images (T2WIs and CE-T1WIs). The Cox proportional hazards model was used to determine the association of texture features, tumour volume and the tumour-node-metastasis (TNM) stage with PFS. Survival curves were plotted using the Kaplan-Meier method. The prognostic performance was evaluated with the receiver operating characteristic (ROC) analyses and C-index. Tumour volume (hazard ratio, 1.054; 95% confidence interval [CI], 1.016–1.093) and CE-T1WI-based uniformity (hazard ratio, 0; 95% CI, 0–0.001) were identified as independent predictors for PFS (p < 0.05). Kaplan-Meier analysis showed that smaller tumour volume (less than the cut-off value, 11.699 cm3) and higher CE-T1WI-based uniformity (greater than the cut-off value, 0.856) were associated with improved PFS (p < 0.05). The combination of CE-T1WI-based uniformity with tumour volume and the overall stage predicted PFS better (area under the curve [AUC], 0.825; Cindex, 0.794) than the tumour volume (AUC, 0.659; C-index, 0.616) or the overall stage (AUC, 0.636; C-index, 0.627) did (p < 0.05). A texture parameter of pretreatment CE-T1WI-based uniformity improves the prediction of PFS in NPC patients. • Higher CE-T1WI-based uniformity and smaller tumour volume are predictive of improved PFS in NPC patients. • The combination of CE-T1WI-based uniformity with tumour volume and the overall stage has a better predictive ability for PFS than the tumour volume or the overall stage alone. • Pretreatment MRI texture analysis has a prognostic value for NPC patients.

41 citations

Journal ArticleDOI
TL;DR: The B-US-RS and SWE-RS outperformed the quantitative SWE parameters and BI-RADS assessment for classifying breast masses and the integration of the deep learning-based radiomics approach would help improve the classification ability of B-mode US and Swe for breast masses.
Abstract: Objective Shear-wave elastography (SWE) can improve the diagnostic specificity of the B-model ultrasonography (US) in breast cancer. However, whether deep learning-based radiomics signatures based on the B-mode US (B-US-RS) or SWE (SWE-RS) could further improve the diagnostic performance remains to be investigated. We aimed to develop the B-US-RS and SWE-RS and determine their performances in classifying breast masses. Materials and methods This retrospective study included 291 women (mean age ± standard deviation, 40.9 ± 12.3 years) from two centers who had US-visible solid breast masses and underwent biopsy and/or surgical resection between June 2015 and July 2017. B-mode US and SWE images of the 198 masses in 198 patients (training cohort) from center 1 were segmented, respectively, to construct B-US-RS and SWE-RS using the least absolute shrinkage and selection operator regression and tested in an independent validation cohort of 65 masses in 65 patients from center 1 and in an external validation cohort of 28 masses in 28 patients from center 2. The performances of B-US-RS and SWE-RS were assessed using receiver operating characteristic (ROC) analysis and compared with that of radiologist assessment [Breast Imaging Reporting and Data System (BI-RADS)] and quantitative SWE parameters [maximum elasticity (E max), mean elasticity (E mean), elasticity ratio (E ratio), and elastic modulus standard deviation (E SD)] by using the McNemar test. Results The single best-performing quantitative SWE parameter, E max, had a higher specificity than BI-RADS assessment in the training and independent validation cohorts (P Conclusion The B-US-RS and SWE-RS outperformed the quantitative SWE parameters and BI-RADS assessment for classifying breast masses. The integration of the deep learning-based radiomics approach would help improve the classification ability of B-mode US and SWE for breast masses.

34 citations

Journal ArticleDOI
TL;DR: Acute tinnitus patients have aberrant FC strength and causal connectivity in both the auditory and non-auditory cortex, especially in the STG, AMYG, and NAc.
Abstract: Article published in Frontiers in Neuroscience available open access at https://doi.org/10.3389/fnins.2020.00592

23 citations

Journal ArticleDOI
TL;DR: MAP MRI outperformed the conventional DTI in the diagnosis of PD and evaluation of the disease severity, and was negatively correlated with UPDRS III motor scores.
Abstract: Background and Purpose Mean apparent propagator (MAP) MRI is a novel diffusion imaging method to map tissue microstructure. The purpose of this study was to evaluate the diagnostic value of the MAP MRI in Parkinson's disease (PD) in comparison with conventional diffusion tensor imaging (DTI). Methods 23 PD patients and 22 age- and gender-matched healthy controls were included. MAP MRI and DTI were performed on a 3T MR scanner with a 20-channel head coil. The MAP metrics including mean square displacement (MSD), return to the origin probability (RTOP), return to the axis probability (RTAP), and return to the plane probability (RTPP), and DTI metrics including fractional anisotropy (FA), and mean diffusivity (MD), were measured in subcortical gray matter and compared between the two groups. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic performance of all the metrics. The association between the diffusion metrics and disease severity was assessed by Pearson correlation analysis. Results For MAP MRI, the mean values of MSD in the bilateral caudate, pallidum, putamen, thalamus and substantia nigra (SN) were higher in PD patients than in healthy controls (pFDR ≤ 0.001); the mean values of the zero displacement probabilities (RTOP, RTAP, and RTPP) in the bilateral caudate, pallidum, putamen and thalamus were lower in PD patients (pFDR < 0.001). For DTI, only FA in the bilateral SN was significantly higher in PD patients than those in the controls (pFDR < 0.001). ROC analysis showed that the areas under the curves of MAP MRI metrics (MSD, RTOP, RTAP, and RTPP) in the bilateral caudate, pallidum, putamen and thalamus (range, 0.85-0.94) were greater than those of FA and MD of DTI (range, 0.55-0.69) in discriminating between PD patients and healthy controls. RTAP in the ipsilateral pallidum (r = -0.56, pFDR = 0.027), RTOP in the bilateral and contralateral putamen (r = -0.58, pFDR = 0.019; r = -0.57, pFDR = 0.024) were negatively correlated with UPDRS III motor scores. Conclusion MAP MRI outperformed the conventional DTI in the diagnosis of PD and evaluation of the disease severity.

23 citations

Journal ArticleDOI
TL;DR: PD and PPS patients have certain discriminative patterns of reduced CBFs, which can be used as a surrogate marker for differential diagnosis.
Abstract: Accurate identification of Parkinson’s disease (PD) and Parkinsonism-Plus syndrome (PPS), especially in the early stage of the disease, is very important. The purpose of this study was to investigate the discriminative spatial pattern of cerebral blood flow (CBF) between patients with PD and PPS. Arterial spin labeling (ASL) perfusion-weighted imaging was performed in 20 patients with PD (mean age 56.35 ± 7.56 years), 16 patients with PPS (mean age 59.62 ± 6.89 years), and 17 healthy controls (HCs, mean age 54.17 ± 6.58 years). Voxel-wise comparison of the CBF was performed among PD, PPS, and HC groups. The receiver operating characteristic (ROC) curve was used to evaluate the performance of CBF in discriminating between PD and PPS. The relationship between CBF and non-motor neuropsychological scores was assessed by correlation analysis. PD group showed a significantly decreased CBF in the right cerebelum_crus2, the left middle frontal gyrus (MFG), the triangle inferior frontal gyrus (IFG_Tri), the left frontal medial orbital gyrus (FG_Med_Orb) and the left caudate nucleus (CN) compared with the HC group (P < 0.05). Besides the above regions, the left supplementary motor area (SMA), the right thalamus had decreased CBF in the PPS group compared with the HC group (P < 0.05). PPS group had lower CBF value in the left MFG, the left IFG_Tri, the left CN, the left SMA, and the right thalamus compared with the PD group (P < 0.05). CBFs in left IFG_Tri, the left CN, the left SMA, and the right thalamus had moderate to high capacity in discriminating between PD and PPS patients (AUC 0.719–0.831). The CBF was positively correlated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores in PD patients, while positively correlated with the MMSE, Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD) scores in PPS patients (P < 0.05). PD and PPS patients have certain discriminative patterns of reduced CBFs, which can be used as a surrogate marker for differential diagnosis.

8 citations


Cited by
More filters
Journal Article
TL;DR: The International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson9s disease as discussed by the authors have been proposed for clinical diagnosis, which are intended for use in clinical research, but may also be used to guide clinical diagnosis.
Abstract: Objective To present the International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson9s disease. Background Although several diagnostic criteria for Parkinson9s disease have been proposed, none have been officially adopted by an official Parkinson society. Moreover, the commonest-used criteria, the UK brain bank, were created more than 25 years ago. In recognition of the lack of standard criteria, the MDS initiated a task force to design new diagnostic criteria for clinical Parkinson9s disease. Methods/Results The MDS-PD Criteria are intended for use in clinical research, but may also be used to guide clinical diagnosis. The benchmark is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise. Although motor abnormalities remain central, there is increasing recognition of non-motor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the MDS-PD Criteria retain motor parkinsonism as the core disease feature, defined as bradykinesia plus rest tremor and/or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies upon three categories of diagnostic features; absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of PD diagnosis). Two levels of certainty are delineated: Clinically-established PD (maximizing specificity at the expense of reduced sensitivity), and Probable PD (which balances sensitivity and specificity). Conclusion The MDS criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, criteria will need continuous revision to accommodate these advances. Disclosure: Dr. Postuma has received personal compensation for activities with Roche Diagnostics Corporation and Biotie Therapies. Dr. Berg has received research support from Michael J. Fox Foundation, the Bundesministerium fur Bildung und Forschung (BMBF), the German Parkinson Association and Novartis GmbH.

1,655 citations

Journal ArticleDOI
TL;DR: Multiparametric MRI-based radiomics could be helpful for personalized risk stratification and treatment in NPC patients receiving IC and Radiomics signature in combination with clinical data showed excellent predictive performance.
Abstract: To establish and validate a radiomics nomogram for prediction of induction chemotherapy (IC) response and survival in nasopharyngeal carcinoma (NPC) patients. One hundred twenty-three NPC patients (100 in training and 23 in validation cohort) with multi-MR images were enrolled. A radiomics nomogram was established by integrating the clinical data and radiomics signature generated by support vector machine. The radiomics signature consisting of 19 selected features from the joint T1-weighted (T1-WI), T2-weighted (T2-WI), and contrast-enhanced T1-weighted MRI images (T1-C) showed good prognostic performance in terms of evaluating IC response in two cohorts. The radiomics nomogram established by integrating the radiomics signature with clinical data outperformed clinical nomogram alone (C-index in validation cohort, 0.863 vs 0.549; p < 0.01). Decision curve analysis demonstrated the clinical utility of the radiomics nomogram. Survival analysis showed that IC responders had significant better PFS (progression-free survival) than non-responders (3-year PFS 84.81% vs 39.75%, p < 0.001). Low-risk groups defined by radiomics signature had significant better PFS than high-risk groups (3-year PFS 76.24% vs 48.04%, p < 0.05). Multiparametric MRI-based radiomics could be helpful for personalized risk stratification and treatment in NPC patients receiving IC. • MRI Radiomics can predict IC response and survival in non-endemic NPC. • Radiomics signature in combination with clinical data showed excellent predictive performance. • Radiomics signature could separate patients into two groups with different prognosis.

90 citations

Journal ArticleDOI
TL;DR: The multidimensional nomogram incorporating RSnd, PS, and TNM stage showed high performance for predicting PFS in patients with locoregionally advanced NPC.

50 citations

Journal ArticleDOI
TL;DR: Through investigating a large one-institutional cohort, the quantitative multi-modalities MRI image phenotypes reveal distinct survival subtypes and the slice-wise analysis method on MRI helps to stratify patients and provides superior prognostic performance over the TNM staging method.
Abstract: The original version of this article, published on 14 March 2019, unfortunately contained a mistake.

44 citations

Journal ArticleDOI
TL;DR: Preoperative prediction of early recurrence of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance.
Abstract: Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. Study type Retrospective. Population In all, 113 HCC patients (ER, n = 58 vs. non-ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. Field strength/sequence 1.5T or 3.0T, gradient-recalled-echo in-phase T1 -weighted imaging (I-T1 WI) and opposed-phase T1 WI (O-T1 WI), fast spin-echo T2 -weighted imaging (T2 WI), spin-echo planar diffusion-weighted imaging (DWI), and gradient-recalled-echo contrast-enhanced MRI (CE-MRI). Assessment In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic-radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. Statistical tests Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). Results The radiomics model based on I-T1 WI, O-T1 WI, T2 WI, and CE-MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598-0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756-0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577-0.907). DCA demonstrated that the combined nomogram was clinically useful. Data conclusion The mpMRI-based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. Evidence level 4. Technical efficacy Stage 4.

43 citations