scispace - formally typeset
Search or ask a question
Author

Xiaoyi Jiang

Other affiliations: Free University of Berlin, European Institute, Analysis Group  ...read more
Bio: Xiaoyi Jiang is an academic researcher from University of Münster. The author has contributed to research in topics: Image segmentation & Segmentation. The author has an hindex of 40, co-authored 391 publications receiving 8176 citations. Previous affiliations of Xiaoyi Jiang include Free University of Berlin & European Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A methodology for evaluating range image segmentation algorithms and four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.
Abstract: A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under-segmentation, and accuracy of the recovered geometry. A tool is used to objectively compare a machine generated segmentation against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.

895 citations

Journal ArticleDOI
TL;DR: A general framework of adaptive local thresholding based on a verification-based multithreshold probing scheme is proposed, regarded as knowledge-guided adaptive thresholding, in contrast to most algorithms known from the literature.
Abstract: In this paper, we propose a general framework of adaptive local thresholding based on a verification-based multithreshold probing scheme. Object hypotheses are generated by binarization using hypothetic thresholds and accepted/rejected by a verification procedure. The application-dependent verification procedure can be designed to fully utilize all relevant informations about the objects of interest. In this sense, our approach is regarded as knowledge-guided adaptive thresholding, in contrast to most algorithms known from the literature. We apply our general framework to detect vessels in retinal images. An experimental evaluation demonstrates superior performance over global thresholding and a vessel detection method recently reported in the literature. Due to its simplicity and general nature, our novel approach is expected to be applicable to a variety of other applications.

716 citations

Journal ArticleDOI
01 Sep 2007
TL;DR: This Special Issue of International Journal of Computer Mathematics (IJCM) offers a venue to present innovative approaches in computer vision and pattern recognition, which have been changing the authors' everyday life dramatically over the last few years, and aims to provide readers with cutting-edge and topical information for their related research.
Abstract: This Special Issue of International Journal of Computer Mathematics (IJCM) offers a venue to present innovative approaches in computer vision and pattern recognition, which have been changing our e...

697 citations

Journal ArticleDOI
TL;DR: This work extends the median concept to the domain of graphs and introduces the novel concepts of set median and generalized median of a set of graphs, and studies properties of both types of median graphs.
Abstract: In object prototype learning and similar tasks, median computation is an important technique for capturing the essential information of a given set of patterns. We extend the median concept to the domain of graphs. In terms of graph distance, we introduce the novel concepts of set median and generalized median of a set of graphs. We study properties of both types of median graphs. For the more complex task of computing generalized median graphs, a genetic search algorithm is developed. Experiments conducted on randomly generated graphs demonstrate the advantage of generalized median graphs compared to set median graphs and the ability of our genetic algorithm to find approximate generalized median graphs in reasonable time. Application examples with both synthetic and nonsynthetic data are shown to illustrate the practical usefulness of the concept of median graphs.

250 citations

Journal ArticleDOI
TL;DR: A novel edge detection algorithm for range images based on a scan line approximation technique that provides edge strength measures that have a straightforward geometric interpretation and supports a classification of edge points into several subtypes is presented.

238 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: In this paper, the authors present a database containing ground truth segmentations produced by humans for images of a wide variety of natural scenes, and define an error measure which quantifies the consistency between segmentations of differing granularities.
Abstract: This paper presents a database containing 'ground truth' segmentations produced by humans for images of a wide variety of natural scenes. We define an error measure which quantifies the consistency between segmentations of differing granularities and find that different human segmentations of the same image are highly consistent. Use of this dataset is demonstrated in two applications: (1) evaluating the performance of segmentation algorithms and (2) measuring probability distributions associated with Gestalt grouping factors as well as statistics of image region properties.

6,505 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations