scispace - formally typeset
Search or ask a question
Author

Xiaoyu Wu

Bio: Xiaoyu Wu is an academic researcher from North University of China. The author has contributed to research in topics: Microstructure & Ultimate tensile strength. The author has an hindex of 2, co-authored 3 publications receiving 17 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, seven AlSi10Mg bulks with different construction angles (0°, 15°, 30°, 45°, 60°, 75°, 90°, and 90°) were fabricated by selective laser melting (SLM).

61 citations

Journal ArticleDOI
Wang Jianhong1, Ren Jie1, Wei Liu1, Xiaoyu Wu1, Gao Mingxiang1, Peikang Bai1 
TL;DR: The optimal process for the laser melting of cobalt-chromium alloy in the selected area is obtained and will contribute to the development of biomedical CoCr alloys manufactured by SLM.
Abstract: Due to the rapid melting and solidification mechanisms involved in selective laser melting (SLM), CoCrMo alloys fabricated by SLM differ from the cast form of the same alloy. In this study, the relationship between process parameters and the morphology and macromechanical properties of cobalt-chromium alloy micro-melting pools is discussed. By measuring the width and depth of the molten pool, a theoretical model of the molten pool is established, and the relationship between the laser power, the scanning speed, the scanning line spacing, and the morphology of the molten pool is determined. At the same time, this study discusses the relationship between laser energy and molding rate. Based on the above research, the optimal process for the laser melting of cobalt-chromium alloy in the selected area is obtained. These results will contribute to the development of biomedical CoCr alloys manufactured by SLM.

26 citations

Journal ArticleDOI
TL;DR: In this article, seven 316L stainless steel bulks with different angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) relative to a build substrate were built via selective laser melting (SLM).
Abstract: In this study, seven 316L stainless steel (316L SS) bulks with different angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) relative to a build substrate were built via selective laser melting (SLM). The influences of different angles on the metallography, microstructure evolution, tensile properties, and corrosion resistance of 316L SS were studied. The 0° sample showed the morphology of corrugated columnar grains, while the 90° sample exhibited equiaxed grains but with a strong texture. The 60° sample had a good strength and plasticity: the tensile strength with 708 MPa, the yield strength with 588 MPa, and the elongation with 54.51%. The dislocation strengthening and grain refinement play a vital role in the mechanical properties for different anisotropy of the SLM-fabricated 316L SS. The 90° sample had greater toughness and corrosion resistance, owing to the higher volume fraction of low-angle grain boundaries and finer grains.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mechanical properties of additively manufactured periodic metallic cellular materials are investigated, and the results showed that the diamond TPMS lattice has superior mechanical properties among the examined topologies.
Abstract: Historically, the approach in material selection was to find the proper material that serves a specific application. Recently, a new approach is implemented such that materials are being architected and topologically tailored to deliver a specific functionality. Periodic cellular materials are increasingly gaining interest due to their tunable structure-related properties. However, the concept of structure–property relationship is not fully employed due to limitations in manufacturing capabilities. Nowadays, additive manufacturing (AM) techniques are facilitating the fabrication of complex structures with high control over the topology. In this work, the mechanical properties of additively manufactured periodic metallic cellular materials are investigated. The presented cellular materials comprise a shell-like topology based on the mathematically known triply periodic minimal surfaces (TPMS). Maraging steel samples with different topologies and relative densities have been fabricated using the powder bed fusion selective laser sintering (SLS) technique, and three-dimensional printing quality was assessed by means of electron microscopy. Samples were tested in compression and the compressive mechanical properties have been deduced. Effects of changing layer thickness and postprocessing such as heat treatment are discussed. Results showed that the diamond TPMS lattice has shown superior mechanical properties among the examined topologies.

52 citations

Journal ArticleDOI
01 Dec 2018
TL;DR: In this article, a modulator contributes alternative modes of laser beam: Gaussian, flat top (top hat), and donut (bagel), which can influence the character of heat and mass transfer.
Abstract: Problems with the laser additive manufacturing of metal parts related to its low efficiency are known to hamper its development and application. The method of selective laser melting of metallic powders can be improved by the installation of an additional laser beam modulator. This allows one to control the power density distribution optically in the laser beam, which can influence the character of heat and mass transfer in a molten pool during processing. The modulator contributes alternative modes of laser beam: Gaussian, flat top (top hat), and donut (bagel). The study of its influence includes a mathematical description and theoretical characterization of the modes, high-speed video monitoring and optical diagnostics, characterization of processing and the physical phenomena of selective laser melting, geometric characterization of single tracks, optical microscopy, and a discussion of the obtained dependences of the main selective laser melting (SLM) parameters and the field of its optimization. The single tracks were produced using the advanced technique of porosity lowering. The parameters of the obtained samples are presented in the form of 3D graphs. The further outlook and advanced applications are discussed.

51 citations

Journal ArticleDOI
TL;DR: This paper reviews the metallic powders used in dental applications, the fabrication process (build orientation, process parameters) and post-processing processes (stress relieving, surface finishing) and includes a critical review of applied thermal treatment methods for Co–Cr alloys used in dentistry.
Abstract: Complex dental components which are individually tailored to the patient can be obtained due to new additive manufacturing technology. This paper reviews the metallic powders used in dental applications, the fabrication process (build orientation, process parameters) and post-processing processes (stress relieving, surface finishing). A review of the literature was performed using PubMed, ScienceDirect, Mendeley and Google Scholar. Over eighty articles were selected based on relevance to this review. This paper attempts to include the latest research from 2010 until 2020, however, older manuscripts (10 articles) were also selected. Over 1200 records were identified through the search; these were screened for title and/or summary. Over eighty articles were selected based on relevance to this review. In order to obtain a product which can be used in clinical applications, the appropriate manufacturing parameters should be selected. A discussion was made on optimal selective laser melting (SLM) parameters in dentistry. In addition, this paper includes a critical review of applied thermal treatment methods for Co-Cr alloys used in dentistry.

43 citations

Journal ArticleDOI
TL;DR: In this paper , the authors summarize the recent progresses on the characterization of microstructure, assessment of strengthening and damage mechanisms, evaluation of fracture and fatigue resistance, and attempts to build a primary comprehensive link between mechanical performance and micro-structure for the as built state.
Abstract: As important structural materials widely used in aerospace and automotive industries, aluminum alloys are perfect candidates for development of laser metal additive manufacturing (AM). Amongst AM aluminum alloys, laser powder bed fusion (LPBF) AlSi10Mg has received substantial attention due to its good printability and relatively low cost. Great efforts have been devoted to seek optimum process parameters that can enhance mechanical performance. However, a large scattering of material properties arises from the literature data, especially for the as built state, thus casting a shadow over further development of LPBF Al alloys. This review article aims to summarize the recent progresses on the characterization of microstructure, assessment of strengthening and damage mechanisms, evaluation of fracture and fatigue resistance, and attempts to build a primary comprehensive link between mechanical performance and microstructure for the as built state. Following the analysis of the state of the art, the review will finally provide an outlook on additional efforts needed to quantify the microstructure-property relation, based on which maximizing the potential of mechanical performance through optimizing microstructure may be achieved.

34 citations

Journal ArticleDOI
05 Jul 2021
TL;DR: In this article, a multiphysics numerical model was proposed to explore the factors affecting the production of parts in the selective laser melting (SLM) process and the mathematical relationships between them, using stainless steel 316L powder.
Abstract: The parameter sets used during the selective laser melting (SLM) process directly affect the final product through the resulting melt-pool temperature. Achieving the optimum set of parameters is usually done experimentally, which is a costly and time-consuming process. Additionally, controlling the deviation of the melt-pool temperature from the specified value during the process ensures that the final product has a homogeneous microstructure. This study proposes a multiphysics numerical model that explores the factors affecting the production of parts in the SLM process and the mathematical relationships between them, using stainless steel 316L powder. The effect of laser power and laser spot diameter on the temperature of the melt-pool at different scanning velocities were studied. Thus, mathematical expressions were obtained to relate process parameters to melt-pool temperature. The resulting mathematical relationships are the basic elements to design a controller to instantly control the melt-pool temperature during the process. In the study, test samples were produced using simulated parameters to validate the simulation approach. Samples produced using simulated parameter sets resulting in temperatures of 2000 K and above had acceptable microstructures. Evaporation defects caused by extreme temperatures, unmelted powder defects due to insufficient temperature, and homogenous microstructures for suitable parameter sets predicted by the simulations were obtained in the experimental results, and the model was validated.

28 citations