scispace - formally typeset
Search or ask a question

Showing papers by "Xiaoyuan Chen published in 2013"


Journal ArticleDOI
TL;DR: A novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT with improved clearance of the dissociated particles after the completion of PTT is reported.
Abstract: The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.

592 citations


Journal ArticleDOI
30 May 2013-ACS Nano
TL;DR: The strong NIR absorption and the capability of encapsulating photosensitizer Ce6 in GVs enable trimodality NIR fluorescence/thermal/photoacoustic imaging-guided synergistic photothermal/photodynamic therapy (PTT/PDT) with improved efficacy.
Abstract: A multifunctional theranostic platform based on photosensitizer-loaded plasmonic vesicular assemblies of gold nanoparticles (GNPs) is developed for effective cancer imaging and treatment. The gold vesicles (GVs) composed of a monolayer of assembled GNPs show strong absorbance in the near-infrared (NIR) range of 650–800 nm, as a result of the plasmonic coupling effect between neighboring GNPs in the vesicular membranes. The strong NIR absorption and the capability of encapsulating photosensitizer Ce6 in GVs enable trimodality NIR fluorescence/thermal/photoacoustic imaging-guided synergistic photothermal/photodynamic therapy (PTT/PDT) with improved efficacy. The Ce6-loaded GVs (GV-Ce6) have the following characteristics: (i) high Ce6 loading efficiency (up to ∼18.4 wt %; (ii) enhanced cellular uptake efficiency of Ce6; (iii) simultaneous trimodality NIR fluorescence/thermal/photoacoustic imaging; (iv) synergistic PTT/PDT treatment with improved efficacy using single wavelength continuous wave laser irradiation.

555 citations


Journal ArticleDOI
27 May 2013-Small
TL;DR: Much more effort is required to develop magnetic iron oxide nanoparticles with improved biocompatible surface engineering to achieve minimal toxicity, for various applications in biomedicine.
Abstract: Owing to their unique physical and chemical properties, magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications of magnetic iron oxide nanoparticles arouse serious concerns about their pharmacokinetics, metabolism, and toxicity. In this review, the updated research on the biomedical applications and potential toxicity of magnetic iron oxide nanoparticles is summarized. Much more effort is required to develop magnetic iron oxide nanoparticles with improved biocompatible surface engineering to achieve minimal toxicity, for various applications in biomedicine.

449 citations


Journal ArticleDOI
TL;DR: The prepared GNS-PEG-Ce6 shows excellent water dispersibility, good biocompatibility, enhanced cellular uptake and remarkable anticancer efficiency upon irradiation in vivo.
Abstract: Chlorin e6 conjugated gold nanostars (GNS-PEG-Ce6) are used to perform simultaneous photodynamic/plasmonic photothermal therapy (PDT/PPTT) upon single laser irradiation. The early-phase PDT effect is coordinated with the late-phase PPTT effect to obtain synergistic anticancer efficiency. The prepared GNS-PEG-Ce6 shows excellent water dispersibility, good biocompatibility, enhanced cellular uptake and remarkable anticancer efficiency upon irradiation in vivo.

432 citations


Journal ArticleDOI
06 Jun 2013-ACS Nano
TL;DR: It is found that C-dots are efficiently and rapidly excreted from the body after all three injection routes, an important step forward toward safety and efficacy analysis of nanoparticles.
Abstract: The emergence of photoluminescent carbon-based nanomaterials has shown exciting potential in the development of benign nanoprobes. However, the in vivo kinetic behaviors of these particles that are necessary for clinical translation are poorly understood to date. In this study, fluorescent carbon dots (C-dots) were synthesized and the effect of three injection routes on their fate in vivo was explored by using both near-infrared fluorescence and positron emission tomography imaging techniques. We found that C-dots are efficiently and rapidly excreted from the body after all three injection routes. The clearance rate of C-dots is ranked as intravenous > intramuscular > subcutaneous. The particles had relatively low retention in the reticuloendothelial system and showed high tumor-to-background contrast. Furthermore, different injection routes also resulted in different blood clearance patterns and tumor uptakes of C-dots. These results satisfy the need for clinical translation and should promote efforts to...

311 citations


Journal ArticleDOI
04 Jun 2013-ACS Nano
TL;DR: It is shown that after being precomplexed with Cu(II), doxorubicin can be loaded onto RGD modified apoferritin nanocages with high efficiency and showed a longer circulation half-life, higher tumor uptake, better tumor growth inhibition, and less cardiotoxicity than free doxorbicin.
Abstract: Ferritin (FRT) is a major iron storage protein found in humans and most living organisms. Each ferritin is composed of 24 subunits, which self-assemble to form a cage-like nanostructure. FRT nanocages can be genetically modified to present a peptide sequence on the surface. Recently, we demonstrated that Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD4C)-modified ferritin can efficiently home to tumors through RGD–integrin αvβ3 interaction. Though promising, studies on evaluating surface modified ferritin nanocages as drug delivery vehicles have seldom been reported. Herein, we showed that after being precomplexed with Cu(II), doxorubicin can be loaded onto RGD modified apoferritin nanocages with high efficiency (up to 73.49 wt %). When studied on U87MG subcutaneous tumor models, these doxorubicin-loaded ferritin nanocages showed a longer circulation half-life, higher tumor uptake, better tumor growth inhibition, and less cardiotoxicity than free doxorubicin. Such a technology might be extended to load a broad r...

301 citations


Journal ArticleDOI
F. P. An, Q. An1, J. Z. Bai, A. B. Balantekin2  +234 moreInstitutions (36)
TL;DR: The Daya Bay experiment has improved the measurement of the nuclear mixing parameter by 2.5× the previously reported exposure, and continues to be the most accurate measurement of θ_(13) as discussed by the authors.
Abstract: With 2.5× the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin^2 2θ_(13) = 0.089 ± 0.010(stat) ± 0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GW_(th) commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944±0.007(stat)±0.003(syst) was measured by three detectors at a flux-weighted average distance of 1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5 ± 0.3% (far detectors) and 2 ± 0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of θ_(13).

281 citations


Journal ArticleDOI
TL;DR: The self-assembly, modeling, and applications of APMN assemblies in selective solvents resulted in strong absorption in near-infrared range due to the remarkable plasmonic coupling of Au cores, thus facilitating their biomedical applications in bioimaging and photothermal therapy of cancer.
Abstract: Amphiphilic plasmonic micelle-like nanoparticles (APMNs) composed of gold nanoparticles (AuNPs) and amphiphilic block copolymers (BCPs) structurally resemble polymer micelles with well-defined architectures and chemistry. The APMNs can be potentially considered as a prototype for modeling a higher-level self-assembly of micelles. The understanding of such secondary self-assembly is of particular importance for the bottom-up design of new hierarchical nanostructures. This article describes the self-assembly, modeling, and applications of APMN assemblies in selective solvents. In a mixture of water/tetrahydrofuran, APMNs assembled into various superstructures, including unimolecular micelles, clusters with controlled number of APMNs, and vesicles, depending on the lengths of polymer tethers and the sizes of AuNP cores. The delicate interplay of entropy and enthalpy contributions to the overall free energy associated with the assembly process, which is strongly dependent on the spherical architecture of APMN...

244 citations


Journal ArticleDOI
11 Jul 2013-ACS Nano
TL;DR: A RGD4C-modified ferritin (RFRT), a protein-based nanoparticle, can serve as a safe and efficient PS vehicle that can transport photosensitizers to tumors in a site-specific manner and holds great clinical translation potential.
Abstract: Photodynamic therapy is an emerging treatment modality that is under intensive preclinical and clinical investigations for many types of disease including cancer. Despite the promise, there is a lack of a reliable drug delivery vehicle that can transport photosensitizers (PSs) to tumors in a site-specific manner. Previous efforts have been focused on polymer- or liposome-based nanocarriers, which are usually associated with a suboptimal PS loading rate and a large particle size. We report herein that a RGD4C-modified ferritin (RFRT), a protein-based nanoparticle, can serve as a safe and efficient PS vehicle. Zinc hexadecafluorophthalocyanine (ZnF16Pc), a potent PS with a high 1O2 quantum yield but poor water solubility, can be encapsulated into RFRTs with a loading rate as high as ∼60 wt % (i.e., 1.5 mg of ZnF16Pc can be loaded on 1 mg of RFRTs), which far exceeds those reported previously. Despite the high loading, the ZnF16Pc-loaded RFRTs (P-RFRTs) show an overall particle size of 18.6 ± 2.6 nm, which i...

236 citations


Journal ArticleDOI
14 Mar 2013-ACS Nano
TL;DR: This study provides a valuable strategy for the design of highly sensitive iron-oxide-based T1 contrast agents with relatively long circulation half-lives, efficient tumor passive targeting (SKOV3, human ovarian cancer xenograft tumor as a model), and the possibility of rapid renal clearance after tumor imaging.
Abstract: We report the design and synthesis of small-sized zwitterion-coated gadolinium-embedded iron oxide (GdIO) nanoparticles, which exhibit a strong T1 contrast effect for tumor imaging through enhanced permeation and retention effect and the ability to clear out of the body in living subjects. The combination of spin-canting effects and the collection of gadolinium species within small-sized GdIO nanoparticles led to a significantly enhanced T1 contrast effect. For example, GdIO nanoparticles with a diameter of ∼4.8 nm exhibited a high r1 relaxivity of 7.85 mM–1·S–1 and a low r2/r1 ratio of 5.24. After being coated with zwitterionic dopamine sulfonate molecules, the 4.8 nm GdIO nanoparticles showed a steady hydrodynamic diameter (∼5.2 nm) in both PBS buffer and fetal bovine serum solution, indicating a low nonspecific protein absorption. This study provides a valuable strategy for the design of highly sensitive iron-oxide-based T1 contrast agents with relatively long circulation half-lives (∼50 min), efficien...

216 citations


Journal ArticleDOI
TL;DR: This photo-theranostics owns good stability, high water dispersibility and solubility, non-cytotoxicity, and good biocompatibility, thus facilitating its biomedical applications, particularly for multi-modal optical, CT and photoacoustic imaging-guided PDT or sonodynamic therapy.

Journal ArticleDOI
TL;DR: The potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation are summarized.
Abstract: Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using (18)F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed.

Journal ArticleDOI
TL;DR: Current nanotechnology-based theranostics systems engineered for PM applications are not yet sufficient, and the authors dissect the requirements for successful nanotheranostics-based PM.
Abstract: Nanotheranostics, the integration of diagnostic and therapeutic function in one system using the benefits of nanotechnology, is extremely attractive for personalized medicine Because treating cancer is not a one-size-fits-all scenario, it requires therapy to be adapted to the patient’s specific biomolecules Personalized and precision medicine (PM) does just that It identifies biomarkers to gain an understanding of the diagnosis and in turn treating the specific disorder based on the precise diagnosis By predominantly utilizing the unique properties of nanoparticles to achieve biomarker identification and drug delivery, nanotheranostics can be applied to noninvasively discover and target image biomarkers and further deliver treatment based on the biomarker distribution This is a large and hopeful role theranostics must fill However, as described in this expert opinion, current nanotechnology-based theranostics systems engineered for PM applications are not yet sufficient PM is an ever-growing field

Journal ArticleDOI
TL;DR: A simple lyophilized kit for labeling PRGD2 peptide (18F-AlF-NOTA-PRGD2, denoted as 18F-alfatide) using a fluoride–aluminum complex that significantly simplified the labeling procedure is developed and can be produced with excellent radiochemical yield and purity via a simple, 1-step, lyophile kit.
Abstract: 18F-FPPRGD2, which was approved for clinical study recently, has favorable properties for integrin targeting and showed potential for antiangiogenic therapy and early response monitoring. However, the time-consuming multiple-step synthesis may limit its widespread applications in the clinic. In this study, we developed a simple lyophilized kit for labeling PRGD2 peptide (18F-AlF-NOTA-PRGD2, denoted as 18F-alfatide) using a fluoride–aluminum complex that significantly simplified the labeling procedure. Methods: Nine patients with a primary diagnosis of lung cancer were examined by both static and dynamic PET imaging with 18F-alfatide, and 1 tuberculosis patient was investigated using both 18F-alfatide and 18F-FDG imaging. Standardized uptake values were measured in tumors and other main organs at 30 min and 1 h after injection. Kinetic parameters were calculated by Logan graphical analysis. Immunohistochemistry and staining intensity quantification were performed to confirm the expression of integrin αvβ3. Results: Under the optimal conditions, the whole radiosynthesis including purification was accomplished within 20 min with a decay-corrected yield of 42.1% ± 2.0% and radiochemical purity of more than 95%. 18F-alfatide PET imaging identified all tumors, with mean standardized uptake values of 2.90 ± 0.10. Tumor-to-muscle and tumor-to-blood ratios were 5.87 ± 2.02 and 2.71 ± 0.92, respectively. Conclusion:18F-alfatide can be produced with excellent radiochemical yield and purity via a simple, 1-step, lyophilized kit. PET scanning with 18F-alfatide allows specific imaging of αvβ3 expression with good contrast in lung cancer patients. This technique might be used for the assessment of angiogenesis and for planning and response evaluation of cancer therapies that would affect angiogenesis status and integrin expression levels.

Journal ArticleDOI
TL;DR: A mesenchymal stem cell (MSC)-based multifunctional platform to target orthotopic glioblastoma by integrating the tumor targeted delivery of mesenchysal stem cells and the multimodal imaging advantage of mesoporous silica nanoparticles (MSNs).

Journal ArticleDOI
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength to study the response of the immune system to EMTs.
Abstract: This paper describes a rapid diagnostic platform for pathogen detection based on the acetylcholinesterase-catalyzed hydrolysis reaction. Owing to the signal amplification strategies, the sensitivity of this assay is comparable to that of PCR. In addition, the readout of this assay is based on the color change of solutions, which can be easily observed by the naked eye alone.

Journal ArticleDOI
Abstract: National Basic Research Program of China (973 Program) [2013CB733802, 2010CB934602]; National Science Foundation of China (NSFC) [81101101, 81201086, 81201129, 81201190, 51273165, 51172005, 81028009]; Chinese Academy of Sciences Professorship for Senior International Scientists [2011T2J06]; Intramural Research Program (IRP) of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH); China Scholarship Council

Journal ArticleDOI
TL;DR: The preservation of sufficient expression of nerve growth factor (NGF) and activation of the neurotrophic tyrosine kinase receptor type 1 (TrkA) pathway following HDACi treatment to be crucial in stimulating the survival of CNS cells after TBI is demonstrated.
Abstract: Acute traumatic brain injury (TBI) is associated with long-term cognitive and behavioral dysfunction. In vivo studies have shown histone deacetylase inhibitors (HDACis) to be neuroprotective following TBI in rodent models. HDACis are intriguing candidates because they are capable of provoking widespread genetic changes and modulation of protein function. By using known HDACis and a unique small-molecule pan-HDACi (LB-205), we investigated the effects and mechanisms associated with HDACi-induced neuroprotection following CNS injury in an astrocyte scratch assay in vitro and a rat TBI model in vivo. We demonstrate the preservation of sufficient expression of nerve growth factor (NGF) and activation of the neurotrophic tyrosine kinase receptor type 1 (TrkA) pathway following HDACi treatment to be crucial in stimulating the survival of CNS cells after TBI. HDACi treatment up-regulated the expression of NGF, phospho-TrkA, phospho-protein kinase B (p-AKT), NF-κB, and B-cell lymphoma 2 (Bcl-2) cell survival factors while down-regulating the expression of p75 neurotrophin receptor (NTR), phospho-JNK, and Bcl-2–associated X protein apoptosis factors. HDACi treatment also increased the expression of the stem cell biomarker nestin, and decreased the expression of reactive astrocyte biomarker GFAP within damaged tissue following TBI. These findings provide further insight into the mechanisms by which HDACi treatment after TBI is neuroprotective and support the continued study of HDACis following acute TBI.

Journal ArticleDOI
TL;DR: [Gd@C(82)(OH)(22)](n) is a new type of metallofullerenol nanoparticle with high anti-tumor activity but low toxicity, and their possible mechanisms are analyzed.
Abstract: Malignant tumor disease is one of the leading causes of human death in many countries. Currently, chemotherapy is considered highly efficient for cancer treatment. However, the clinical application of conventional chemotherapeutic agents is limited because of their high toxicity. With the development of nanotechnology, engineered nanomaterials have been widely and increasingly used in biomedical fields such as biomedicine. Thus, the use of engineered nanomaterials has become a promising approach to cancer treatment. Many newly fabricated nanomaterials with unique characteristics exhibit favorable therapeutic and diagnostic properties, implying their enormous potential as biomedical candidates. [Gd@C82(OH)22]n is a new type of metallofullerenol nanoparticle with high anti-tumor activity but low toxicity. In this article, the properties and biological effects of [Gd@C82(OH)22]n are summarized, and their possible mechanisms are analyzed.

Journal ArticleDOI
TL;DR: The design and synthesis of multifunctional VEGF-loaded IR800-conjugated graphene oxide (GO-IR800-VEGF) for multi-modality imaging-monitored therapeutic angiogenesis of ischemic muscle suggests the great promise of using graphene oxide in theranostic applications for treating isChemic disease.
Abstract: Herein we report the design and synthesis of multifunctional VEGF-loaded IR800-conjugated graphene oxide (GO-IR800-VEGF) for multi-modality imaging-monitored therapeutic angiogenesis of ischemic muscle. The as-prepared GO-IR800-VEGF positively targets VEGF receptors, maintains an elevated level of VEGF in ischemic tissues for a prolonged time, and finally leads to remarkable therapeutic angiogenesis of ischemic muscle. Although more efforts are required to further understand the in vivo behaviors and the long-term toxicology of GO, our work demonstrates the success of using GO for efficient VEGF delivery in vivo by intravenous administration and suggests the great promise of using graphene oxide in theranostic applications for treating ischemic disease.

Journal ArticleDOI
TL;DR: It is shown here for the first time that the fluorescence of pH-sensitive aza-BODIPY dyes was switched intracellularly not by acidic pH, but by intrACEllular membranes (and proteins as well) - an ideal choice for live-cell imaging and in vivo cell tracking.
Abstract: Chemically synthesized near-infrared aza-BODIPY dyes displayed off–on fluorescence at acidic pH (pKa = 6.2–6.6) through the suppression of the photoinduced electron transfer and/or internal charge transfer process. The apparent pKas of the dyes were shifted well above physiological pH in a hydrophobic microenvironment, which led to “turned-on” fluorescence in micelles and liposomes at neutral and basic pH. Bovine serum albumin also activated the fluorescence, though to a much lesser extent. When these small molecular dyes entered cells, instead of being fluorescent only in acidic organelles, the whole cytoplasm exhibited fluorescence, with a signal/background ratio as high as ∼10 in no-wash live-cell imaging. The dye 1-labeled cells remained highly fluorescent even after 3 days. Moreover, slight variations of the dye structure resulted in significantly different intracellular fluorescence behaviors, possibly because of their different cellular uptake and intracellular activation capabilities. After the se...

Journal ArticleDOI
TL;DR: It is reported that the mammalian homolog of the yeast mitochondrial disulfide relay protein Mia40 (CHCHD4) is necessary for the respiratory-dependent translocation of p53 into the mitochondria.
Abstract: p53, a critical tumor suppressor, regulates mitochondrial respiration, but how a nuclear protein can orchestrate the function of an organelle encoded by two separate genomes, both of which require p53 for their integrity, remains unclear. Here we report that the mammalian homolog of the yeast mitochondrial disulfide relay protein Mia40 (CHCHD4) is necessary for the respiratory-dependent translocation of p53 into the mitochondria. In the setting of oxidative stress, increased CHCHD4 expression partitions p53 into the mitochondria and protects its genomic integrity while decreasing p53 nuclear localization and transcriptional activity. Conversely, decreased CHCHD4 expression prevents the mitochondrial translocation of p53 while augmenting its nuclear localization and activity. Thus, the mitochondrial disulfide relay system allows p53 to regulate two spatially segregated genomes depending on oxidative metabolic activity.

Journal ArticleDOI
TL;DR: A highly efficient method has been developed for site-specific 18F labeling of cysteine-containing peptides and proteins based on sequential ligation with a bifunctional tetrazinyl-maleimide and an 18F-labeled trans-cyclooctene.
Abstract: 18F positron emission tomography (PET) has a number of attributes that make it clinically attractive, including nearly 100% positron efficiency, very high specific radioactivity, and a short half-life of ≈ 110 minutes. However, the short half-life of 18F and the poor nucleophilicity of fluoride introduce challenges for the incorporation of 18F into complex molecules. Recently, the tetrazine-trans-cyclooctene ligation was introduced as a novel 18F labeling method that proceeds with fast reaction rates without catalysis. Herein we report an efficient method for 18F labeling of free cysteines of peptides and proteins based on sequential ligation with a bifunctional tetrazinyl-maleimide and an 18F-labeled trans-cyclooctene. The newly developed method was tested for site-specific labeling of both c(RGDyC) peptide and vascular endothelial growth factor (VEGF)-SH protein. Starting with 4 mCi of 18F-trans-cyclooctene and only 10 μg of tetrazine-RGD (80-100 μM) or 15 μg of tetrazine-VEGF (6.0 μM), 18F-labeled RGD peptide and VEGF protein could be obtained within 5 minutes in 95% yield and 75% yield, respectively. The obtained tracers were then evaluated in mice. In conclusion, a highly efficient method has been developed for site-specific 18F labeling of cysteine-containing peptides and proteins. The special characteristics of the tetrazine-trans-cyclooctene ligation provide unprecedented opportunities to synthesize 18F-labeled probes with high specific activity for PET applications.

Journal ArticleDOI
TL;DR: This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.
Abstract: This report illustrates a new strategy of designing a T1–T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO–stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1–T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1–T2 dual-modal MRI monitoring capability.

Journal ArticleDOI
11 Oct 2013-Small
TL;DR: A detection platform combining NIR-emitting CdSeTe/CdS/ZnS QD-encoded microbeads and Beckman Coulter FC 500 flow cytometry with one laser is successfully used to conduct a 2-plex hybridization assay for hepatitis B surface antigen, hepatitis B e antigen, and hepatitis B core antibody.
Abstract: NIR-emitting CdSeTe/CdS/ZnS core/shell/shell QD-encoded microbeads are combined with common flow cytometry with one laser for multiplexed detection of hepatitis B virus (HBV). A facile one-pot synthetic route is developed to prepare CdSeTe/CdS/ZnS core/shell/shell QDs with high photoluminescence quantum yield and excellent stability in liquid paraffin, and a Shirasu porous glass (SPG) membrane emulsification technique is applied to incorporate the QDs into polystyrene-maleic anhydride (PSMA) microbeads to obtain highly fluorescent QD-encoded microbeads. The relatively wide NIR photoluminescence full width half maximum of the CdSeTe/CdS/ZnS QDs is used to develop a 'single wavelength' encoding method to obtain different optical codes by changing the wavelengh and emission intensity of the QDs incorporated into the microbeads. Moreover, a detection platform combining NIR-emitting CdSeTe/CdS/ZnS QD-encoded microbeads and Beckman Coulter FC 500 flow cytometry with one laser of 488 nm is successfully used to conduct a 2-plex hybridization assay for hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and a 3-plex hybridization assay for hepatitis B surface antibody (HBsAb), hepatitis B e antibody (HBeAb), and hepatitis B core antibody (HBcAb), which suggests the promising application of NIR QD-encoded microbeads for multiplex immunoassays.

Journal ArticleDOI
TL;DR: Both diffusion-weighted and SPIO-enhanced MRI can distinguish tumor metastatic lymph nodes from reactive lymph nodes, however, neither method is able to detect tumor metastasis to the draining lymph nodes at early stages.
Abstract: Determination of lymphatic metastasis is of great importance for both treatment planning and patient prognosis. We aim to distinguish tumor metastatic lymph nodes (TLNs) and reactive lymph nodes (RLNs) with diffusion-weighted and superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance imaging (MRI). Ipsilateral popliteal lymph node metastasis or lymphadenitis model was established by hock injection of either luciferase-expressing 4T1 murine breast cancer cells or complete Freund's adjuvant in male BALB/c mice. At different time points after inoculation, bioluminescence imaging and T2-weighted, diffusion-weighted, and SPIO-enhanced MRI were performed. Imaging findings were confirmed by histopathological staining. Size enlargement was observed in both TLNs and RLNs. At day 28, TLNs showed strong bioluminescence signal and bigger size than RLNs (p < 0.01). At early stages up to day 21, both TLNs and RLNs appeared homogeneous on diffusion-weighted imaging. At day 28, TLNs showed heterogeneous apparent diffusion coefficient (ADC) map with significantly higher average ADC value of 0.41 ± 0.03 × 10−3mm2/s than that of RLNs (0.34 ± 0.02 × 10−3mm2/s; p < 0.05). On SPIO-enhanced MRI, both TLNs and RLNs showed distinct T2 signal reduction at day 21 after inoculation. At day 28, TLNs demonstrated partial uptake of the iron oxide particles, which was confirmed by Prussian blue staining. Both diffusion-weighted and SPIO-enhanced MRI can distinguish tumor metastatic lymph nodes from reactive lymph nodes. However, neither method is able to detect tumor metastasis to the draining lymph nodes at early stages.

Journal ArticleDOI
10 Jun 2013-Small
TL;DR: F multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor-targeted delivery of siRNA expressing DNA nanocassettes to enhance the therapeutic effect of the siRNA-mediated cancer therapy.
Abstract: Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double-stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor-targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double-stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor-mediated internalization should enhance the therapeutic effect of the siRNA-mediated cancer therapy.

Journal ArticleDOI
TL;DR: An ultrasensitive and selective probe for detection of mercuric ions using gold-silver core-shell nanorods as the substrate of surface-enhanced Raman scattering and the efficiency of this probe in complex samples was evaluated.
Abstract: We report an ultrasensitive and selective probe for detection of mercuric ions using gold–silver core–shell nanorods as the substrate of surface-enhanced Raman scattering. The detection limit of this probe for mercuric ions can be as low as 1 pM. The efficiency of this probe in complex samples was evaluated by allowing detection of spiked mercuric ions in river water and fish samples.

Journal ArticleDOI
TL;DR: There is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging.
Abstract: Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [18F]fluorodeoxyglucose ([18F]FDG), which measures glucose metabolism. However, [18F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[18F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.

Journal ArticleDOI
TL;DR: BLI of apoptosis with pcFluc-DEVD as a reporter gene facilitates the determination of kinetics of the apoptotic process in a real-time manner, which provides a unique tool for drug development and therapy response monitoring.
Abstract: Major State Basic Research Development Program of China (973 Program) [2013CB733800, 2013CB733802]; National Science Foundation of China (NSFC) [8101101, 81201086, 81201129, 51273165]; Chinese Academy of Sciences professorship for Senior International Scientists [2011T2J06]; Key Project of Chinese Ministry of Education [212149]; Intramural Research Program (IRP) of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)