scispace - formally typeset
Search or ask a question
Author

Xiaoyuan Chen

Bio: Xiaoyuan Chen is an academic researcher from National University of Singapore. The author has contributed to research in topics: Physics & Photothermal therapy. The author has an hindex of 149, co-authored 994 publications receiving 89870 citations. Previous affiliations of Xiaoyuan Chen include Brown University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: The in vivo targeting and imaging of tumor vasculature using arginine-glycine-aspartic acid (RGD) peptide-labeled quantum dots (QDs) opens up new perspectives for integrin-targeted near-infrared optical imaging and may aid in cancer detection and management including imaging-guided surgery.
Abstract: We report the in vivo targeting and imaging of tumor vasculature using arginine-glycine-aspartic acid (RGD) peptide-labeled quantum dots (QDs). Athymic nude mice bearing subcutaneous U87MG human glioblastoma tumors were administered QD705-RGD intravenously. The tumor fluorescence intensity reached maximum at 6 h postinjection with good contrast. The results reported here open up new perspectives for integrin-targeted near-infrared optical imaging and may aid in cancer detection and management including imaging-guided surgery.

922 citations

Posted ContentDOI
TL;DR: In-vivo nanotube drug delivery for tumor suppression in mice shows promise for high treatment efficacy and minimum side effects for future cancer therapy with low drug doses.
Abstract: Chemically functionalized single-walled carbon nanotubes (SWNTs) have shown promise in tumor targeted accumulation in mice and exhibit biocompatibility, excretion and little toxicity. Here, we demonstrate in-vivo SWNT drug delivery for tumor suppression in mice. We conjugate paclitaxel (PTX), a widely used cancer chemotherapy drug to branched polyethylene-glycol (PEG) chains on SWNTs via a cleavable ester bond to obtain a water soluble SWNT-paclitaxel conjugate (SWNT-PTX). SWNT-PTX affords higher efficacy in suppressing tumor growth than clinical Taxol in a murine 4T1 breast-cancer model, owing to prolonged blood circulation and 10-fold higher tumor PTX uptake by SWNT delivery likely through enhanced permeability and retention (EPR). Drug molecules carried into the reticuloendothelial system are released from SWNTs and excreted via biliary pathway without causing obvious toxic effects to normal organs. Thus, nanotube drug delivery is promising for high treatment efficacy and minimum side effects for future cancer therapy with low drug doses.

826 citations

Journal ArticleDOI
TL;DR: The evolution and state of the art of cancer nanotheranostics is described, with an emphasis on clinical impact and translation, and how diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes.
Abstract: Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau 'nanotheranostics'. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle-tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.

806 citations

Journal ArticleDOI
M. Ablikim, Z. H. An, J. Z. Bai, Niklaus Berger  +325 moreInstitutions (19)
TL;DR: In this article, the design and construction of BESIII, which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + e − collider, is discussed.
Abstract: This paper will discuss the design and construction of BESIII, which is designed to study physics in the τ -charm energy region utilizing the new high luminosity BEPCII double ring e + e − collider. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in a steel magnetic yoke for the flux return. The level 1 trigger system, data acquisition system and the detector control system based on networked computers will also be described.

733 citations

Journal ArticleDOI
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the response of the immune system to EMTs.
Abstract: 1.1. Significance of IVDs in the Clinic IVD test is a crucial component of clinical care that performs a diagnostic test on biological samples that have been taken from a living body, such as blood, urine, and tissue.1 Such tests are usually performed to determine or confirm the presence of disease in an individual. “In vitro” literally means “within the glass”, which indicates that the test was historically conducted in glass test tubes. In contrast, in vivo tests, literally “within the living”, are conducted within a whole, living organism including human body.2 IVD tests have received much public attention because of their distinct features in the medical profession. First, IVD tests do not interact with the human body directly, making such diagnosis accessible without invasive surgeries and thus saving a great deal of suffering. Second, the procedures of IVDs are performed on samples rather than human body, avoiding the possible biological safety problems on patients that often take place in the in vivo diagnostics. Third, an IVD test can quickly provide valuable information on a patient’s healthcare conditions. On the basis of the information, physicians or patients are able to make a timely decision for patient care or treatment. Fourth, the application of IVDs enables early diagnosis and makes treatment of serious diseases easier. Generally, the cost of early testing is much lower than that of the later on extensive treatment. Last, IVDs play a particularly vital role in remote settings for managing outbreaks of acute infectious diseases, where effective but simple diagnostic systems are highly desirable. These features make IVDs unique and of great importance among medical technologies.

685 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations