scispace - formally typeset
Search or ask a question
Author

Xiaoyuan Chen

Bio: Xiaoyuan Chen is an academic researcher from National University of Singapore. The author has contributed to research in topics: Physics & Photothermal therapy. The author has an hindex of 149, co-authored 994 publications receiving 89870 citations. Previous affiliations of Xiaoyuan Chen include Brown University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: The fabrication of copper peroxide (CP) nanodot is reported, which is the first example of a Fenton-type metal peroxide nanomaterial, and its use as an activatable agent for enhanced CDT by self-supplying H2O2.
Abstract: Chemodynamic therapy (CDT) employs Fenton catalysts to kill cancer cells by converting intracellular H2O2 into hydroxyl radical (•OH), but endogenous H2O2 is insufficient to achieve satisfactory anticancer efficacy. Despite tremendous efforts, engineering CDT agents with specific and efficient H2O2 self-supplying ability remains a great challenge. Here, we report the fabrication of copper peroxide (CP) nanodot, which is the first example of a Fenton-type metal peroxide nanomaterial, and its use as an activatable agent for enhanced CDT by self-supplying H2O2. The CP nanodots were prepared through coordination of H2O2 to Cu2+ with the aid of hydroxide ion, which could be reversed by acid treatment. After endocytosis into tumor cells, acidic environment of endo/lysosomes accelerated the dissociation of CP nanodots, allowing simultaneous release of Fenton catalytic Cu2+ and H2O2 accompanied by a Fenton-type reaction between them. The resulting •OH induced lysosomal membrane permeabilization through lipid peroxidation and thus caused cell death via a lysosome-associated pathway. In addition to pH-dependent •OH generation property, CP nanodots with small particle size showed high tumor accumulation after intravenous administration, which enabled effective tumor growth inhibition with minimal side effects in vivo. Our work not only provides the first paradigm for fabricating Fenton-type metal peroxide nanomaterials, but also presents a new strategy to improve CDT efficacy.

634 citations

Journal ArticleDOI
TL;DR: This review article summarized the recent progress in various nanoformulations for cancer therapy, with a special emphasis on tumour microenvironment stimuli-responsive ones, which it believes offer a good chance for the practical translation of nanoparticle formulas into clinic.
Abstract: Nanovehicles can efficiently carry and deliver anticancer agents to tumour sites Compared with normal tissue, the tumour microenvironment has some unique properties, such as vascular abnormalities, hypoxia and acidic pH There are many types of cells, including tumour cells, macrophages, immune and fibroblast cells, fed by defective blood vessels in the solid tumour Exploiting the tumour microenvironment can benefit the design of nanoparticles for enhanced therapeutic effectiveness In this review article, we summarized the recent progress in various nanoformulations for cancer therapy, with a special emphasis on tumour microenvironment stimuli-responsive ones Numerous tumour microenvironment modulation strategies with promising cancer therapeutic efficacy have also been highlighted Future challenges and opportunities of design consideration are also discussed in detail We believe that these tumour microenvironment modulation strategies offer a good chance for the practical translation of nanoparticle formulas into clinic

632 citations

Journal ArticleDOI
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength to describe the response of the immune system to EMTs.
Abstract: National Key Basic Research Program (973 Project) [2010CB933901, 2011CB933100]; National Natural Scientific Fund [51102258, 20803040, 81028009, 31170961]; New Century Excellent Talent of Ministry of Education of China [NCET-08-0350]; Shanghai Science and Technology Fund [1052nm04100]; Ministry of Education

617 citations

Journal ArticleDOI
TL;DR: A novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT with improved clearance of the dissociated particles after the completion of PTT is reported.
Abstract: The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.

592 citations

Journal ArticleDOI
06 Aug 2012-ACS Nano
TL;DR: Recent developments in electrochemical immunosensors have significantly improved the sensitivity needed to detect low concentrations of biomarkers present in early stages of cancer, with an emphasis on opportunities for further improvement in cancer diagnostics and treatment monitoring.
Abstract: Bioanalytical methods have experienced unprecedented growth in recent years, driven in large part by the need for faster, more sensitive, more portable (“point of care”) systems to detect protein biomarkers for clinical diagnosis. Electrochemical detection strategies, used in conjunction with immunosensors, offer advantages because they are fast, simple, and low cost. Recent developments in electrochemical immunosensors have significantly improved the sensitivity needed to detect low concentrations of biomarkers present in early stages of cancer. Moreover, the coupling of electrochemical devices with nanomaterials, such as gold nanoparticles, carbon nanotubes, magnetic particles, and quantum dots, offers multiplexing capability for simultaneous measurements of multiple cancer biomarkers. This review will discuss recent advances in the development of electrochemical immunosensors for the next generation of cancer diagnostics, with an emphasis on opportunities for further improvement in cancer diagnostics a...

589 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations