scispace - formally typeset
Search or ask a question
Author

Xiaoyuan Chen

Bio: Xiaoyuan Chen is an academic researcher from National University of Singapore. The author has contributed to research in topics: Physics & Photothermal therapy. The author has an hindex of 149, co-authored 994 publications receiving 89870 citations. Previous affiliations of Xiaoyuan Chen include Brown University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: In vitro studies demonstrated that the loading of DOX by this supramolecular nanomaterial exhibited selective cytotoxicity towards cancer cells over normal cells, and in vivo experiments confirmed that the DOX-loaded SNPs possess excellent antitumor efficacy with negligible systemic toxicity.

112 citations

Journal ArticleDOI
TL;DR: It is shown that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape.
Abstract: Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI) However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape The r2 values of iron oxide clusters and Landau-Lifshitz-Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents

111 citations

Journal ArticleDOI
26 Jun 2019-ACS Nano
TL;DR: As indicated by in vivo tumor formation experiments, tumorigenicity was signi?cantly suppressed after one radiotherapy treatment with the Au8NCs, and tumors treated with the nanosensitizer exhibited an inhibition rate of 74.2%.
Abstract: Gold nanoclusters have become promising radiosensitizers due to their ultrasmall size and robust ability to adsorb, scatter, and re-emit radiation. However, most of the previously reported gold nanocluster radiosensitizers do not have a precise atomic structure, causing difficulties in understanding the structure-activity relationship. In this study, a structurally defined gold-levonorgestrel nanocluster consisting of Au8(C21H27O2)8 (Au8NC) with bright luminescence (58.7% quantum yield) and satisfactory biocompatibility was demonstrated as a nanoradiosensitizer. When the Au8NCs were irradiated with X-rays, they produced reactive oxygen species (ROS), resulting in irreversible cell apoptosis. As indicated by in vivo tumor formation experiments, tumorigenicity was significantly suppressed after one radiotherapy treatment with the Au8NCs. In addition, compared with tumors treated with X-rays (4 Gy) alone, tumors treated with the nanosensitizer exhibited an inhibition rate of 74.2%. This study contributes to the development of atomically precise gold nanoclusters as efficient radiosensitizers.

111 citations

Journal ArticleDOI
TL;DR: Compared with other tracers, 64Cu-NOTA-RGD-bombesin showed favorable in vivo kinetics and enhanced tumor uptake, which warrants its further investigation for targeting tumors that express integrin or GRPR or that coexpress integrin and GRPR for imaging and therapeutic applications.
Abstract: The overexpression of gastrin-releasing peptide receptor (GRPR) in various tumor types suggests that GRPR is an attractive target for cancer imaging and therapy with radiolabeled bombesin analogs. We recently reported the ability of 18F-labeled RGD-bombesin heterodimer to be used for dual integrin αvβ3– and GRPR-targeted imaging. To further investigate the synergistic effect of the dual-receptor targeting of peptide heterodimers, we evaluated 64Cu-labeled RGD-bombesin for PET imaging of tumors. Methods: RGD-bombesin was coupled with 1,4,7,10-tetraazacyclododecane-N, N′, N′′, N′′′-tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the conjugates were labeled with 64Cu. The in vitro and in vivo characteristics of 64Cu-NOTA-RGD-bombesin were compared with those of 64Cu-NOTA-RGD, 64Cu-NOTA-bombesin, and 64Cu-DOTA-RGD-bombesin. Results:64Cu-NOTA-RGD-bombesin and 64Cu-DOTA-RGD-bombesin had comparable dual integrin αvβ3– and GRPR-binding affinities in vitro, both of which were slightly lower than RGD for integrin binding and bombesin for GRPR binding. 64Cu-NOTA-RGD-bombesin possessed significantly higher tumor uptake than did 64Cu-NOTA-RGD, 64Cu-NOTA-bombesin, the mixture of 64Cu-NOTA-RGD and 64Cu-NOTA-bombesin, or 64Cu-DOTA-RGD-bombesin in PC-3 prostate cancer. 64Cu-NOTA-RGD-bombesin also showed improved in vivo kinetics such as lower liver and intestinal activity accumulation than did the bombesin tracers. 64Cu-NOTA-RGD-bombesin also outperformed 64Cu-NOTA-RGD in a 4T1 murine mammary carcinoma model that expresses integrin on tumor vasculature but no GRPR in tumor tissue, which had no uptake of 64Cu-NOTA-bombesin. Conclusion: Compared with other tracers, 64Cu-NOTA-RGD-bombesin showed favorable in vivo kinetics and enhanced tumor uptake, which warrants its further investigation for targeting tumors that express integrin or GRPR or that coexpress integrin and GRPR for imaging and therapeutic applications. The synergistic effect of RGD-bombesin heterodimers observed in this study also encourages further investigations of novel heterodimers recognizing other cell surface receptors for tumor targeting.

110 citations

Journal ArticleDOI
TL;DR: This review summarizes the progress of supramolecular theranostics on the basis of host-guest chemistry benefiting from their fantastic topological structures and outstanding supramolescular chemistry to provide new methodologies to overcome the obstacles faced by the traditional theranostic systems.
Abstract: Macrocyclic hosts, such as cyclodextrins, calixarenes, cucurbiturils, and pillararenes, exhibit unparalleled advantages in disease diagnosis and therapy over the past years by fully taking advantage of their host-guest molecular recognitions. The dynamic nature of the non-covalent interactions and selective host-guest complexation endow the resultant nanomaterials with intriguing properties, holding promising potentials in theranostic fields. Interestingly, the differences in microenvironment between the abnormal and normal cells/tissues can be employed as the stimuli to modulate the host-guest interactions, realizing the purpose of precise diagnosis and specific delivery of drugs to lesion sites. In this review, we summarize the progress of supramolecular theranostics on the basis of host-guest chemistry benefiting from their fantastic topological structures and outstanding supramolecular chemistry. These state-of-the-art examples provide new methodologies to overcome the obstacles faced by the traditional theranostic systems, promoting their clinical translations.

109 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations