scispace - formally typeset
Search or ask a question
Author

Xiaoyuan Chen

Bio: Xiaoyuan Chen is an academic researcher from National University of Singapore. The author has contributed to research in topics: Physics & Photothermal therapy. The author has an hindex of 149, co-authored 994 publications receiving 89870 citations. Previous affiliations of Xiaoyuan Chen include Brown University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: This review aims to provide an overview of nanoscintillator-mediated X-ray induced PDT (X-PDT) including the concept, the design considerations of nanosensitizers for X- PDT, the modelling of nanOSensitizer energy deposition, the putative mechanism by which X-PDt kills cells, and the prospects of future directions.
Abstract: Photodynamic therapy (PDT) has shown great effectiveness in oncotherapy but has not been implemented in broad clinical applications because the limited penetration depth of the light used has been unable to reach deep-seated tumors. However, X-rays have been widely used in the clinical field for imaging and radiation therapy due to their excellent tissue penetration depth. Recently, X-rays have been established as an ideal excitation source for PDT, which holds great promise for breaking the depth limitation of traditional PDT for treatment of deep-seated tumors. This review aims to provide an overview of nanoscintillator-mediated X-ray induced PDT (X-PDT) including the concept, the design considerations of nanosensitizers for X-PDT, the modelling of nanosensitizer energy deposition, the putative mechanism by which X-PDT kills cells, and the prospects of future directions. We attempt to summarize the main developments that have occurred over the past decades. Possibilities and challenges for the clinical translation of X-PDT are also discussed.

104 citations

Journal ArticleDOI
TL;DR: The results suggest that the hierarchical micelles can act as a superior theranostic platform for cancer imaging and multimodal synergistic therapy.
Abstract: It is highly desirable to develop theranostic nanoparticles for achieving cancer imaging with enhanced contrast and simultaneously multimodal synergistic therapy. Herein, we report a theranostic micelle system hierarchically assembling cyanine dye (indocyanine green) and chemotherapeutic compound (doxorubicin) (I/D-Micelles) as a novel theranostic platform with high drug loading, good stability and enhanced cellular uptake via clathrin-mediated endocytosis. I/D-Micelles exhibit the multiple functionalities including near-infrared fluorescence (NIRF), hyperthermia and intracellular singlet oxygen from indocyanine green, and simultaneous cytotoxicity from doxorubicin. Upon photoirradiation, I/D-Micelles can induce NIRF imaging, acute photothermal therapy via hyperthermia and simultaneous synergistic chemotherapy via singlet oxygen-triggered disruption of lysosomal membranes, eventually leading to enhanced NIRF imaging and superior tumor eradication without any re-growth. Our results suggest that the hierarchical micelles can act as a superior theranostic platform for cancer imaging and multimodal synergistic therapy.

103 citations

Journal ArticleDOI
TL;DR: In this paper, a double-layered plasmonic-magnetic vesicle was constructed from a Janus amphiphilic Au-Fe3 O4 NPs grafted with polymer brushes of different hydrophilicity.
Abstract: Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs Herein, we report a new class of double-layered plasmonic-magnetic vesicle assembled from Janus amphiphilic Au-Fe3 O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3 O4 surfaces separately Like liposomes, the vesicle shell is composed of two layers of Au-Fe3 O4 NPs in opposite direction, and the orientation of Au or Fe3 O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers

103 citations

Journal ArticleDOI
TL;DR: The findings reveal that OA@BCMNs may provide a clinical basis for improving oncolytic virotherapy by overcoming undesired antiviral immunity and enhancing cancer cell selectivity via biomimetic synthesis approaches.
Abstract: Currently, various oncolytic adenoviruses (OA) are being explored in both preclinical and clinical virotherapy. However, the pre-existing neutralizing antibodies (nAbs) and poor targeting delivery are major obstacles for systemically administered OA. Therefore, we designed bioengineered cell membrane nanovesicles (BCMNs) that harbor targeting ligands to achieve robust antiviral immune shielding and targeting capabilities for oncolytic virotherapy. We employed two distinct biomimetic synthetic approaches: the first is based on in vitro genetic membrane engineering to embed targeting ligands on the cell membrane, and the second is based on in vivo expression of CRISPR-engineered targeting ligands on red-blood-cell membranes. The results indicate that both bioengineering approaches preserve the infectivity and replication capacity of OA in the presence of nAbs, in vitro and in vivo. Notably, OA@BCMNs demonstrated a significant suppression of the induced innate and adaptive immune responses against OA. Enhanced targeting delivery, viral oncolysis, and survival benefits in multiple xenograft models were observed without overt toxicity. These findings reveal that OA@BCMNs may provide a clinical basis for improving oncolytic virotherapy by overcoming undesired antiviral immunity and enhancing cancer cell selectivity via biomimetic synthesis approaches.

103 citations

Journal ArticleDOI
15 Jun 2018-ACS Nano
TL;DR: This paper reports the design of photoactivatable platinum(IV) (Pt(IV)) amphiphiles containing one or two hydrophilic lactose targeting ligands per hydrophobic Pt( IV) prodrug for an all-in-one precise nanomedicine.
Abstract: Drug, targeting ligand, and imaging agent are the three essential components in a nanoparticle-based drug delivery system. However, tremendous batch-to-batch variation of composition and drug content typically accompany the current approaches of building these components together. Herein, we report the design of photoactivatable platinum(IV) (Pt(IV)) amphiphiles containing one or two hydrophilic lactose targeting ligands per hydrophobic Pt(IV) prodrug for an all-in-one precise nanomedicine. Self-assembly of these Pt(IV) amphiphiles results in either micelle or vesicle formation with a fixed Pt/targeting moiety ratio and a constantly high content of Pt. The micelles and vesicles are capable of hepatoma cell-targeting, fluorescence/Pt-based CT imaging and have shown effective anticancer efficacy under laser irradiation in vitro and in vivo. This photoactivatable, active self-targeting, and multimodal theranostic amphiphile strategy shows great potential in constructing precise nanomedicine.

103 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations