scispace - formally typeset
Search or ask a question
Author

Xiaoyuan Chen

Bio: Xiaoyuan Chen is an academic researcher from National University of Singapore. The author has contributed to research in topics: Physics & Photothermal therapy. The author has an hindex of 149, co-authored 994 publications receiving 89870 citations. Previous affiliations of Xiaoyuan Chen include Brown University & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: An ammonia-assisted hot water etching strategy for the generic synthesis of a library of small-sized hollow mesoporous organosilica nanoparticles with mono, double, triple, and even quadruple framework hybridization of diverse organic moieties designed for oxygen-independent X-ray-activated synergistic therapy.
Abstract: The success of radiotherapy relies on tumor-specific delivery of radiosensitizers to attenuate hypoxia resistance. Here we report an ammonia-assisted hot water etching strategy for the generic synthesis of a library of small-sized (sub-50 nm) hollow mesoporous organosilica nanoparticles (HMONs) with mono, double, triple, and even quadruple framework hybridization of diverse organic moieties by changing only the introduced bissilylated organosilica precursors. The biodegradable thioether-hybridized HMONs are chosen for efficient co-delivery of tert-butyl hydroperoxide (TBHP) and iron pentacarbonyl (Fe(CO)5). Distinct from conventional RT, radiodynamic therapy (RDT) is developed by taking advantage of X-ray-activated peroxy bond cleavage within TBHP to generate •OH, which can further attack Fe(CO)5 to release CO molecules for gas therapy. Detailed in vitro and in vivo studies reveal the X-ray-activated cascaded release of •OH and CO molecules from TBHP/Fe(CO)5 co-loaded PEGylated HMONs without reliance on oxygen, which brings about remarkable destructive effects against both normoxic and hypoxic cancers. A common failure of many cancer treatments is attributed to the resistance imparted by tumour hypoxia. Here, the authors report on the generic synthesis of small-sized hollow mesoporous organosilica nanoparticles which are designed for oxygen-independent X-ray-activated synergistic therapy.

101 citations

Journal ArticleDOI
TL;DR: A novel type of optical nanoprobes, photostimulable LiGa5O8:Cr3+ near-infrared (NIR) persistent Luminescence nanoparticles, which, with very-long-lasting NIR persistent luminescence and unique photo-stimulated persistent luminecence (PSPL) capability, allow optical imaging to be performed in an excitation-free and hence, autofluorescence-free manner.
Abstract: In vivo fluorescence imaging suffers from suboptimal signal-to-noise ratio and shallow detection depth, which is caused by the strong tissue autofluorescence under constant external excitation and the scattering and absorption of short-wavelength light in tissues. Here we address these limitations by using a novel type of optical nanoprobes, photostimulable LiGa5O8:Cr(3+) near-infrared (NIR) persistent luminescence nanoparticles, which, with very-long-lasting NIR persistent luminescence and unique photo-stimulated persistent luminescence (PSPL) capability, allow optical imaging to be performed in an excitation-free and hence, autofluorescence-free manner. LiGa5O8:Cr(3+) nanoparticles pre-charged by ultraviolet light can be repeatedly (>20 times) stimulated in vivo, even in deep tissues, by short-illumination (~15 seconds) with a white light-emitting-diode flashlight, giving rise to multiple NIR PSPL that expands the tracking window from several hours to more than 10 days. Our studies reveal promising potential of these nanoprobes in cell tracking and tumor targeting, exhibiting exceptional sensitivity and penetration that far exceed those afforded by conventional fluorescence imaging.

101 citations

Journal ArticleDOI
TL;DR: The enhanced theranostic capability of zinc(II)-dipicolylamine-assisted assembly of ICG, as well as simultaneous targeted gene delivery in an experimental mouse model of cancer are shown.
Abstract: We report the rational design of coordination-driven self-assembly metal-organic nanostructures for multifunctional nanotheranostics. Zinc(II) coordination-based nano-formulations capable of loading indocyanine green (ICG) and therapeutic genes were prepared to achieve a fluorescence/photoacoustic imaging-guided combination photo/gene therapy strategy. We showed the enhanced theranostic capability of zinc(II)-dipicolylamine-assisted assembly of ICG, as well as simultaneous targeted gene delivery in an experimental mouse model of cancer. Such a co-assembly strategy provides a facile way to achieve combined therapeutic functions for personalized nanomedicine.

101 citations

Journal ArticleDOI
TL;DR: Noninvasive NIR fluorescence imaging is able to detect and semiquantify tumor integrin expression based upon the highly potent tetrameric RGD peptide probe.
Abstract: Purpose Cell adhesion molecule integrin αvβ3 is an excellent target for tumor interventions because of its unique expression on the surface of several types of solid tumor cells and on almost all sprouting tumor vasculatures. Here, we describe the development of near-infrared (NIR) fluorochrome Cy7-labeled RGD peptides for tumor integrin targeting.

101 citations

Journal ArticleDOI
TL;DR: The magneto-plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field, and applied as imaging agents for in vivo bimodal photoacoustic and magnetic resonance imaging of tumors by intravenous injection.
Abstract: Magneto-plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near-infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto-plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.

100 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations