scispace - formally typeset
Search or ask a question
Author

Xiliang Wang

Bio: Xiliang Wang is an academic researcher from Peking University. The author has contributed to research in topics: Cancer & Embryonic stem cell. The author has an hindex of 5, co-authored 9 publications receiving 102 citations.

Papers
More filters
Journal ArticleDOI
04 Feb 2021-Cell
TL;DR: A pan-cancer analysis of single myeloid cells from 210 patients across 15 human cancer types identified distinct features of TIMs across cancer types and suggested future avenues for rational, targeted immunotherapies.

374 citations

Journal ArticleDOI
Xiliang Wang1, Yao He1, Qiming Zhang1, Xianwen Ren1, Zemin Zhang1 
TL;DR: In this article, the authors compared the performance of droplet-based 10X Genomics Chromium (10X) and plate-based Smart-seq2 full-length methods.

116 citations

Posted ContentDOI
Xiliang Wang1, Yao He1, Qiming Zhang1, Xianwen Ren1, Zemin Zhang1 
22 Apr 2019-bioRxiv
TL;DR: A comprehensive benchmark analysis offers the basis for selecting the optimal scRNA-seq strategy based on the objectives of each study, and detects different sets of differentially expressed genes between cell clusters, indicating the complementary nature of these technologies.
Abstract: Single cell RNA sequencing (scRNA-seq) is widely used for profiling transcriptomes of individual cells. The droplet-based 10X Genomics Chromium (10X) approach and the plate-based Smart-seq2 full-length method are two frequently-used scRNA-seq platforms, yet there are only a few thorough and systematic comparisons of their advantages and limitations. Here, by directly comparing the scRNA-seq data by the two platforms from the same samples of CD45-cells, we systematically evaluated their features using a wide spectrum of analysis. Smart-seq2 detected more genes in a cell, especially low abundance transcripts as well as alternatively spliced transcripts, but captured higher proportion of mitochondrial genes. The composite of Smart-seq2 data also resembled bulk RNA-seq data better. For 10X-based data, we observed higher noise for mRNA in the low expression level. Despite the poly(A) enrichment, approximately 10-30% of all detected transcripts by both platforms were from non-coding genes, with lncRNA accounting for a higher proportion in 10X. 10X-based data displayed more severe dropout problem, especially for genes with lower expression levels. However, 10X-data can better detect rare cell types given its ability to cover a large number of cells. In addition, each platform detected different sets of differentially expressed genes between cell clusters, indicating the complementary nature of these technologies. Our comprehensive benchmark analysis offers the basis for selecting the optimal scRNA-seq strategy based on the objectives of each study.

99 citations

Journal ArticleDOI
TL;DR: The heterogeneity and interacting molecules of the TME in NPC are uncovers at single-cell resolution, which provide insights into the mechanisms underlying NPC progression and the development of precise therapies for NPC.
Abstract: The heterogeneous nature of tumour microenvironment (TME) underlying diverse treatment responses remains unclear in nasopharyngeal carcinoma (NPC). Here, we profile 176,447 cells from 10 NPC tumour-blood pairs, using single-cell transcriptome coupled with T cell receptor sequencing. Our analyses reveal 53 cell subtypes, including tumour-infiltrating CD8+ T, regulatory T (Treg), and dendritic cells (DCs), as well as malignant cells with different Epstein-Barr virus infection status. Trajectory analyses reveal exhausted CD8+ T and immune-suppressive TNFRSF4+ Treg cells in tumours might derive from peripheral CX3CR1+CD8+ T and naive Treg cells, respectively. Moreover, we identify immune-regulatory and tolerogenic LAMP3+ DCs. Noteworthily, we observe intensive inter-cell interactions among LAMP3+ DCs, Treg, exhausted CD8+ T, and malignant cells, suggesting potential cross-talks to foster an immune-suppressive niche for the TME. Collectively, our study uncovers the heterogeneity and interacting molecules of the TME in NPC at single-cell resolution, which provide insights into the mechanisms underlying NPC progression and the development of precise therapies for NPC.

81 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed single-cell RNA sequencing and single T cell receptor sequencing of 200,615 cells in both human dilated cardiomyopathy (DCM) and ischemic cardiopathy (ICM) hearts.
Abstract: Inflammation and fibrosis are intertwined mechanisms fundamentally involved in heart failure. Detailed deciphering gene expression perturbations and cell-cell interactions of leukocytes and non-myocytes is required to understand cell-type-specific pathology in the failing human myocardium. To this end, we performed single-cell RNA sequencing and single T cell receptor sequencing of 200,615 cells in both human dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) hearts. We sampled both lesion and mild-lesion tissues from each heart to sequentially capture cellular and molecular alterations to different extents of cardiac fibrosis. By which, left (lesion) and right ventricle (mild-lesion) for DCM hearts were harvest while infarcted (lesion) and non-infarcted area (mild-lesion) were dissected from ICM hearts. A novel transcription factor AEBP1 was identified as a crucial cardiac fibrosis regulator in ACTA2+ myofibroblasts. Within fibrotic myocardium, an infiltration of a considerable number of leukocytes was witnessed, especially cytotoxic and exhausted CD8+ T cells and pro-inflammatory CD4+ T cells. Furthermore, a subset of tissue-resident macrophage, CXCL8hiCCR2+HLA-DRhi macrophage was particularly identified in severely fibrotic area, which interacted with activated endothelial cell via DARC, that potentially facilitate leukocyte recruitment and infiltration in human heart failure.

44 citations


Cited by
More filters
01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations

Journal Article
04 Jun 2019-Elements
TL;DR: Two independent MRTMs populations exist across tissues with specific niche-dependent phenotype and functional programming, and it is shown that monocyte-derived RTMs (MRTMs) are two separate lineages, rather than representing points along a developmental or maturation continuum.
Abstract: INTRODUCTION Resident tissue macrophages (RTMs) are a heterogeneous population of immune cells occupying multiple tissue niches and exhibiting microenvironment-specific phenotypes and functions. In certain tissues such as the brain, lung, and liver, embryonically derived RTMs maintain themselves by self-renewal, whereas others, including those in the gut, dermis, and pancreas, are replaced by monocytes, at levels that are tissue specific. Once they arrive in their tissue of residence, monocytes undergo extensive differentiation according to molecular cues provided by their distinct tissue-specific niches, enabling their development into specialized RTMs that support local tissue function. RATIONALE As a result of this ontogenetic and tissue niche heterogeneity, each tissue contains multiple populations of macrophages. For example, in the murine lung, alveolar macrophages are the major embryonically derived population in the alveolar spaces, whereas a minor population named interstitial macrophages (IMs) resides within the lung parenchyma. Previous results reported several phenotypically distinct IM subpopulations, whose relationship remained unknown. Do they represent independent populations or, rather, different points on the spectrum of maturation and activation states? How do these differences relate to their localization in tissue or roles in tissue function in health and disease? Does such macrophage heterogeneity also exist in other tissues? RESULTS Here, using single-cell mRNA sequencing, we unbiasedly identified two independent populations exhibiting distinct gene expression profiles and phenotypes: Lyve1loMHCIIhiCX3CR1hi (Lyve1loMHCIIhi) and Lyve1hiMHCIIloCX3CR1lo (Lyve1hiMHCIIlo) RTMs. We uncovered evidence of parallel populations in multiple others tissues, including the heart, fat, and dermis, as well as in human lung and omental and subcutaneous fat tissues, suggesting that a similar dichotomy is observed in human tissues. We further demonstrated that both populations are slowly replaced by Ly6Chi monocytes. Importantly, using complementary fate-mapping models, we showed that monocyte-derived RTMs (MRTMs) are two separate lineages, rather than representing points along a developmental or maturation continuum. Notably, these distinct MRTM populations preferentially reside within different, but conserved, subtissular niches, located either adjacent to nerve bundles and fibers (Lyve1loMHCIIhi) or blood vessels (Lyve1hiMHCIIlo) across tissues. Finally, by acutely depleting Lyve1hiMHCIIlo MRTMs using a mouse model of inducible macrophage depletion during the induction of fibrosis, we found that the absence of Lyve1hiMHCIIlo IMs exacerbated experimental lung and heart fibrosis, demonstrating their critical role in tissue inflammation. CONCLUSION Two independent MRTMs populations exist across tissues with specific niche-dependent phenotype and functional programming. Their different roles in homeostasis, immune regulation, and fibrosis renders them attractive and separate cellular targets for the therapeutic exploitation of RTM subsets.

374 citations

01 Nov 2016
TL;DR: Single-cell genomics has now made it possible to create a comprehensive atlas of human cells and has reopened definitions of a cell's identity and of the ways in which identity is regulated by the cell's molecular circuitry.
Abstract: Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell's identity and of the ways in which identity is regulated by the cell's molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell's identity, from discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of 'basis vectors', each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges-from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities.

372 citations

Journal ArticleDOI
TL;DR: In this article, single-cell RNA-and ATAC-sequencing was used to examine the immune cell dynamics in 22 patients with advanced triple-negative breast cancer (TNBC) treated with paclitaxel or its combination with the anti-PD-L1 atezolizumab.

169 citations

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a set of macrophage-targeting strategies that include inhibitors of cytokines and chemokines involved in the recruitment and polarization of tumour-promoting myeloid cells as well as activators of their antitumorigenic and immunostimulating functions.
Abstract: Tumour-associated macrophages are an essential component of the tumour microenvironment and have a role in the orchestration of angiogenesis, extracellular matrix remodelling, cancer cell proliferation, metastasis and immunosuppression, as well as in resistance to chemotherapeutic agents and checkpoint blockade immunotherapy. Conversely, when appropriately activated, macrophages can mediate phagocytosis of cancer cells and cytotoxic tumour killing, and engage in effective bidirectional interactions with components of the innate and adaptive immune system. Therefore, they have emerged as therapeutic targets in cancer therapy. Macrophage-targeting strategies include inhibitors of cytokines and chemokines involved in the recruitment and polarization of tumour-promoting myeloid cells as well as activators of their antitumorigenic and immunostimulating functions. Early clinical trials suggest that targeting negative regulators (checkpoints) of myeloid cell function indeed has antitumor potential. Finally, given the continuous recruitment of myelomonocytic cells into tumour tissues, macrophages are candidates for cell therapy with the development of chimeric antigen receptor effector cells. Macrophage-centred therapeutic strategies have the potential to complement, and synergize with, currently available tools in the oncology armamentarium.

165 citations