scispace - formally typeset
Search or ask a question
Author

Xilin Lu

Bio: Xilin Lu is an academic researcher from Tongji University. The author has contributed to research in topics: Earthquake shaking table & Damper. The author has an hindex of 27, co-authored 159 publications receiving 2287 citations. Previous affiliations of Xilin Lu include California Institute of Technology & University of Southern California.


Papers
More filters
Journal ArticleDOI
TL;DR: Three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscousdamper (NVD), respectively.

203 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of particle damping technology, beginning with its basic concept, developmental history, and research status all over the world, and various interpretations of the underlying damping mechanism are introduced and discussed in detail.
Abstract: Particle damping, an effective passive vibration control technology, is developing dramatically at the present stage, especially in the aerospace and machinery fields. The aim of this paper is to provide an overview of particle damping technology, beginning with its basic concept, developmental history, and research status all over the world. Furthermore, various interpretations of the underlying damping mechanism are introduced and discussed in detail. The theoretical analysis and numerical simulation, together with their pros and cons are systematically expounded, in which a discrete element method of simulating a multi-degree-of-freedom structure with a particle damper system is illustrated. Moreover, on the basis of previous studies, a simplified method to analyze the complicated nonlinear particle damping is proposed, in which all particles are modeled as a single mass, thereby simplifying its use by practicing engineers. In order to broaden the applicability of particle dampers, it is necessary to implement the coupled algorithm of finite element method and discrete element method. In addition, the characteristics of experimental studies on particle damping are also summarized. Finally, the application of particle damping technology in the aerospace field, machinery field, lifeline engineering, and civil engineering is reviewed at length. As a new trend in structural vibration control, the application of particle damping in civil engineering is just at the beginning. The advantages and potential applications are demonstrated, whereas the difficulties and deficiencies in the present studies are also discussed. The paper concludes by suggesting future developments involving semi-active approaches that can enhance the effectiveness of particle dampers when used in conjunction with structures subjected to nonstationary excitation, such as earthquakes and similar nonstationary random excitations.

153 citations

Journal ArticleDOI
TL;DR: In this paper, a rigid plate was set in front of the tunnel face to maintain stability at the initial state, by moving the plate backward from the soil, the displacement and earth pressure curve of tunnel face was obtained.

100 citations

Journal ArticleDOI
Xilin Lu1, Yun Zou2, Yun Zou1, Wensheng Lu1, Bin Zhao1 
TL;DR: In this article, a 1/50 scaled model is made and tested on shaking table under a series of one and two-dimensional base excitations with gradually increasing acceleration amplitudes, and the test results demonstrate that the structural system is a good solution to withstand earthquakes.
Abstract: The height of 101-storey Shanghai World Financial Center Tower is 492m above ground making it possible the tallest building in the world when completed. Three parallel structural systems including mega-frame structure, reinforced concrete and braced steel services core and outrigger trusses, are combined to resist vertical and lateral loads. The building could be classified as a vertically irregular structure due to a number of stiffened and transfer stories in the building. Complexities related to structural system layout are mainly exhibited in the design of services core, mega-diagonals and outrigger trusses. According to Chinese Code, the height 190 m of the building clearly exceeds the stipulated maximum height of for a composite frame/reinforced concrete core building. The aspect ratio of height to width also exceeds the stipulated limit of 7 for seismic design intensity 7. A 1/50 scaled model is made and tested on shaking table under a series of one and two-dimensional base excitations with gradually increasing acceleration amplitudes. This paper presents the dynamic characteristics, the seismic responses and the failure mechanism of the structure. The test results demonstrate that the structural system is a good solution to withstand earthquakes. The inter-storey drift and the overall behaviour meet the requirements of Chinese Design Code. Furthermore, weak positions under seldom-occurred earthquakes of seismic design intensity 8 are found based on the visible damages on the testing model, and some corresponding suggestions are proposed for the engineering design of the structure under extremely strong earthquake. Copyright © 2006 John Wiley & Sons, Ltd.

92 citations

Journal ArticleDOI
TL;DR: In this article, a 1/2-scale model of a two-story self-centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure.
Abstract: Summary Self-centering reinforced concrete frames are developed as an alternative of traditional seismic force-resisting systems with better seismic performance and re-centering capability. This paper presents an experimental and computational study on the seismic performance of self-centering reinforced concrete frames. A 1/2-scale model of a two-story self-centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self-centering capacity subjected to earthquakes; the self-centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self-centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self-centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.

84 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

01 Jan 1990
TL;DR: The ASCE/SEI 7-05 standard as discussed by the authors provides a complete update and reorganization of the wind load provisions, expanding them from one chapter into six, and includes new ultimate event wind maps with corresponding reductions in load factors.
Abstract: Minimum Design Loads for Buildings and Other Structures provides requirements for general structural design and includes means for determining dead, live, soil, flood, wind, snow, rain, atmospheric ice, and earthquake loads, as well as their combinations, which are suitable for inclusion in building codes and other documents. This Standard, a revision of ASCE/SEI 7-05, offers a complete update and reorganization of the wind load provisions, expanding them from one chapter into six. The Standard contains new ultimate event wind maps with corresponding reductions in load factors, so that the loads are not affected, and updates the seismic loads with new risk-targeted seismic maps. The snow, live, and atmospheric icing provisions are updated as well. In addition, the Standard includes a detailed Commentary with explanatory and supplementary information designed to assist building code committees and regulatory authorities. Standard ASCE/SEI 7 is an integral part of building codes in the United States. Many of the load provisions are substantially adopted by reference in the International Building Code and the NFPA 5000 Building Construction and Safety Code. Structural engineers, architects, and those engaged in preparing and administering local building codes will find this Standard an essential reference in their practice. Note: New orders are fulfilled from the second printing, which incorporates the errata to the first printing.

974 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive assessment of recent developments of nonlinear isolators in the absence of active control means is presented, which highlights resolved and unresolved problems and recommendations for future research directions.

885 citations

Journal ArticleDOI
TL;DR: A review of the past, recent developments and implementations of the Bouc-Wen model which is used extensively in modeling the hysteresis phenomenon in the dynamically excited nonlinear structures can be found in this paper.
Abstract: Structural systems often show nonlinear behavior under severe excitations generated by natural hazards. In that condition, the restoring force becomes highly nonlinear showing significant hysteresis. The hereditary nature of this nonlinear restoring force indicates that the force cannot be described as a function of the instantaneous displacement and velocity. Accordingly, many hysteretic restoring force models were developed to include the time dependent nature using a set of differential equations. This survey contains a review of the past, recent developments and implementations of the Bouc-Wen model which is used extensively in modeling the hysteresis phenomenon in the dynamically excited nonlinear structures.

602 citations