Author
Xin Luo
Other affiliations: Hong Kong Polytechnic University, Shenzhen University, Chongqing University ...read more
Bio: Xin Luo is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Computer science & Collaborative filtering. The author has an hindex of 39, co-authored 167 publications receiving 4552 citations. Previous affiliations of Xin Luo include Hong Kong Polytechnic University & Shenzhen University.
Papers
More filters
TL;DR: The idea is to investigate the non-negative update process depending on each involved feature rather than on the whole feature matrices, and propose the regularized single-element-based NMF (RSNMF) model, which is especially suitable for solving CF problems subject to the constraint of non-negativity.
Abstract: Matrix-factorization (MF)-based approaches prove to be highly accurate and scalable in addressing collaborative filtering (CF) problems. During the MF process, the non-negativity, which ensures good representativeness of the learnt model, is critically important. However, current non-negative MF (NMF) models are mostly designed for problems in computer vision, while CF problems differ from them due to their extreme sparsity of the target rating-matrix. Currently available NMF-based CF models are based on matrix manipulation and lack practicability for industrial use. In this work, we focus on developing an NMF-based CF model with a single-element-based approach. The idea is to investigate the non-negative update process depending on each involved feature rather than on the whole feature matrices. With the non-negative single-element-based update rules, we subsequently integrate the Tikhonov regularizing terms, and propose the regularized single-element-based NMF (RSNMF) model. RSNMF is especially suitable for solving CF problems subject to the constraint of non-negativity. The experiments on large industrial datasets show high accuracy and low-computational complexity achieved by RSNMF.
533 citations
TL;DR: Computer simulations are conducted and show that, compared to the existing methods, the proposed scheme can raise the manipulability almost 40% on average, which substantiates the efficacy, accuracy, and superiority of the proposed manipulable optimization scheme.
Abstract: For solving the singularity problem arising in the control of manipulators, an efficient way is to maximize its manipulability. However, it is challenging to optimize manipulability effectively because it is a nonconvex function to the joint angles of a robotic arm. In addition, the involvement of an inversion operation in the expression of manipulability makes it even hard for timely optimization due to the intensively computational burden for matrix inversion. In this paper, we make progress on real-time manipulability optimization by establishing a dynamic neural network for recurrent calculation of manipulability-maximal control actions for redundant manipulators under physical constraints in an inverse-free manner. By expressing position tracking and matrix inversion as equality constraints, physical limits as inequality constraints, and velocity-level manipulability measure, which is affine to the joint velocities, as the objective function, the manipulability optimization scheme is further formulated as a constrained quadratic program. Then, a dynamic neural network with rigorously provable convergence is constructed to solve such a problem online. Computer simulations are conducted and show that, compared to the existing methods, the proposed scheme can raise the manipulability almost 40% on average, which substantiates the efficacy, accuracy, and superiority of the proposed manipulability optimization scheme.
296 citations
TL;DR: An alternating direction method (ADM)-based nonnegative latent factor (ANLF) model is proposed, which ensures fast convergence and high prediction accuracy, as well as the maintenance of nonnegativity constraints.
Abstract: Nonnegative matrix factorization (NMF)-based models possess fine representativeness of a target matrix, which is critically important in collaborative filtering (CF)-based recommender systems. However, current NMF-based CF recommenders suffer from the problem of high computational and storage complexity, as well as slow convergence rate, which prevents them from industrial usage in context of big data. To address these issues, this paper proposes an alternating direction method (ADM)-based nonnegative latent factor (ANLF) model. The main idea is to implement the ADM-based optimization with regard to each single feature, to obtain high convergence rate as well as low complexity. Both computational and storage costs of ANLF are linear with the size of given data in the target matrix, which ensures high efficiency when dealing with extremely sparse matrices usually seen in CF problems. As demonstrated by the experiments on large, real data sets, ANLF also ensures fast convergence and high prediction accuracy, as well as the maintenance of nonnegativity constraints. Moreover, it is simple and easy to implement for real applications of learning systems.
295 citations
TL;DR: Experimental results indicate that compared with the state-of-the-art predictors, the newly proposed one achieves significantly higher prediction accuracy at the expense of affordable computational burden, especially suitable for industrial applications requiring high prediction accuracy of unknown QoS data.
Abstract: Generating highly accurate predictions for missing quality-of-service (QoS) data is an important issue. Latent factor (LF)-based QoS-predictors have proven to be effective in dealing with it. However, they are based on first-order solvers that cannot well address their target problem that is inherently bilinear and nonconvex, thereby leaving a significant opportunity for accuracy improvement. This paper proposes to incorporate an efficient second-order solver into them to raise their accuracy. To do so, we adopt the principle of Hessian-free optimization and successfully avoid the direct manipulation of a Hessian matrix, by employing the efficiently obtainable product between its Gauss-Newton approximation and an arbitrary vector. Thus, the second-order information is innovatively integrated into them. Experimental results on two industrial QoS datasets indicate that compared with the state-of-the-art predictors, the newly proposed one achieves significantly higher prediction accuracy at the expense of affordable computational burden. Hence, it is especially suitable for industrial applications requiring high prediction accuracy of unknown QoS data.
246 citations
TL;DR: Comparison results between the proposed ensemble and several widely employed and state-of-the-art QoS predictors on two large, real data sets demonstrate that the former can outperform the latter well in terms of prediction accuracy.
Abstract: Automatic Web-service selection is an important research topic in the domain of service computing. During this process, reliable predictions for quality of service (QoS) based on historical service invocations are vital to users. This work aims at making highly accurate predictions for missing QoS data via building an ensemble of nonnegative latent factor (NLF) models. Its motivations are: 1) the fulfillment of nonnegativity constraints can better represent the positive value nature of QoS data, thereby boosting the prediction accuracy and 2) since QoS prediction is a learning task, it is promising to further improve the prediction accuracy with a carefully designed ensemble model. To achieve this, we first implement an NLF model for QoS prediction. This model is then diversified through feature sampling and randomness injection to form a diversified NLF model, based on which an ensemble is built. Comparison results between the proposed ensemble and several widely employed and state-of-the-art QoS predictors on two large, real data sets demonstrate that the former can outperform the latter well in terms of prediction accuracy.
225 citations
Cited by
More filters
Book•
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index
3,569 citations
TL;DR: An overview of recommender systems as well as collaborative filtering methods and algorithms is provided, which explains their evolution, provides an original classification for these systems, identifies areas of future implementation and develops certain areas selected for past, present or future importance.
Abstract: Recommender systems have developed in parallel with the web. They were initially based on demographic, content-based and collaborative filtering. Currently, these systems are incorporating social information. In the future, they will use implicit, local and personal information from the Internet of things. This article provides an overview of recommender systems as well as collaborative filtering methods and algorithms; it also explains their evolution, provides an original classification for these systems, identifies areas of future implementation and develops certain areas selected for past, present or future importance.
2,639 citations
15 Oct 2004
2,118 citations
Journal Article•
TL;DR: Why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease are detailed.
Abstract: Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.
1,323 citations