scispace - formally typeset
Search or ask a question
Author

Xin-She Yang

Bio: Xin-She Yang is an academic researcher from Middlesex University. The author has contributed to research in topics: Metaheuristic & Firefly algorithm. The author has an hindex of 85, co-authored 444 publications receiving 61136 citations. Previous affiliations of Xin-She Yang include University of Oxford & Chinese Academy of Sciences.


Papers
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: This chapter provides an overview of the fundamentals of algorithms and their links to self-organization, exploration, and exploitation.
Abstract: Algorithms are important tools for solving problems computationally. All computation involves algorithms, and the efficiency of an algorithm largely determines its usefulness. This chapter provides an overview of the fundamentals of algorithms and their links to self-organization, exploration, and exploitation. A brief history of recent nature-inspired algorithms for optimization is outlined in this chapter.

8,285 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: A new meta-heuristic algorithm, called Cuckoo Search (CS), is formulated, based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Lévy flight behaviour ofSome birds and fruit flies, for solving optimization problems.
Abstract: In this paper, we intend to formulate a new meta-heuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Levy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the results and suggestion for further research.

5,521 citations

Book
01 Feb 2008
TL;DR: This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms.
Abstract: Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.

3,626 citations

Posted Content
TL;DR: The Bat Algorithm as mentioned in this paper is based on the echolocation behavior of bats and combines the advantages of existing algorithms into the new bat algorithm to solve many tough optimization problems.
Abstract: Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.

3,528 citations

Book ChapterDOI
26 Oct 2009
TL;DR: In this article, a new Firefly Algorithm (FA) was proposed for multimodal optimization applications. And the proposed FA was compared with other metaheuristic algorithms such as particle swarm optimization (PSO).
Abstract: Nature-inspired algorithms are among the most powerful algorithms for optimization. This paper intends to provide a detailed description of a new Firefly Algorithm (FA) for multimodal optimization applications. We will compare the proposed firefly algorithm with other metaheuristic algorithms such as particle swarm optimization (PSO). Simulations and results indicate that the proposed firefly algorithm is superior to existing metaheuristic algorithms. Finally we will discuss its applications and implications for further research.

3,436 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Book ChapterDOI
01 Jan 2014
TL;DR: This chapter provides an overview of the fundamentals of algorithms and their links to self-organization, exploration, and exploitation.
Abstract: Algorithms are important tools for solving problems computationally. All computation involves algorithms, and the efficiency of an algorithm largely determines its usefulness. This chapter provides an overview of the fundamentals of algorithms and their links to self-organization, exploration, and exploitation. A brief history of recent nature-inspired algorithms for optimization is outlined in this chapter.

8,285 citations