scispace - formally typeset
Search or ask a question
Author

Xin Wan

Bio: Xin Wan is an academic researcher from Zhejiang University. The author has contributed to research in topics: Quantum Hall effect & Quantum spin Hall effect. The author has an hindex of 19, co-authored 67 publications receiving 1022 citations. Previous affiliations of Xin Wan include Asia Pacific Center for Theoretical Physics & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: The exact diagonalization calculation indicates that edge reconstruction occurs in the fractional quantum Hall regime for a variety of confining potential, including ones that correspond to a "sharp" edge.
Abstract: We study the interplay of electron-electron interaction, confining potential and effects of finite temperature at the edge of a quantum Hall liquid. Our exact diagonalization calculation indicates that edge reconstruction occurs in the fractional quantum Hall regime for a variety of confining potential, including ones that correspond to a ``sharp'' edge. Our finite temperature Hartree-Fock calculation for integer quantum Hall edges indicates that reconstruction is suppressed above a certain temperature. We discuss the implication of our results on recent edge tunneling and microwave absorption experiments.

93 citations

Journal ArticleDOI
TL;DR: In this paper, a review of studies on II-VI and III-V Mn-doped Diluted Magnetic Semiconductors is presented, based on a presentation at the Spintronics 2001 conference, which provides a simple model appropriate for the low carrier density (insulating) regime, although some of the unusual features of the magnetization curves should qualitatively be present at larger dopings (metallic regime) as well.
Abstract: This paper, based on a presentation at the Spintronics 2001 conference, provides a review of our studies on II-VI and III-V Mn-doped Diluted Magnetic Semiconductors. We use simple models appropriate for the low carrier density (insulating) regime, although we believe that some of the unusual features of the magnetization curves should qualitatively be present at larger dopings (metallic regime) as well. Positional disorder of the magnetic impurities inside the host semiconductor is shown to have observable consequences for the shape of the magnetization curve. Below the critical temperature the magnetization is spatially inhomogeneous, leading to very unusual temperature dependence of the average magnetization as well as specific heat. Disorder is also found to enhance the ferromagnetic transition temperature. Unusual spin and charge transport is implied.

93 citations

Posted Content
TL;DR: In this paper, a review of studies on II-VI and III-V Mn-doped Diluted Magnetic Semiconductors is presented, based on a presentation at the Spintronics 2001 conference, which provides a simple model appropriate for the low carrier density (insulating) regime, although some of the unusual features of the magnetization curves should qualitatively be present at larger dopings (metallic regime) as well.
Abstract: This paper, based on a presentation at the Spintronics 2001 conference, provides a review of our studies on II-VI and III-V Mn-doped Diluted Magnetic Semiconductors. We use simple models appropriate for the low carrier density (insulating) regime, although we believe that some of the unusual features of the magnetization curves should qualitatively be present at larger dopings (metallic regime) as well. Positional disorder of the magnetic impurities inside the host semiconductor is shown to have observable consequences for the shape of the magnetization curve. Below the critical temperature the magnetization is spatially inhomogeneous, leading to very unusual temperature dependence of the average magnetization as well as specific heat. Disorder is also found to enhance the ferromagnetic transition temperature. Unusual spin and charge transport is implied.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction 5∕2, based on the disk geometry, including Coulomb interaction and a semirealistic confining potential.
Abstract: We present a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction $\ensuremath{ u}=5∕2$, based on the disk geometry. Our model includes Coulomb interaction and a semirealistic confining potential. We also mix in a three-body interaction in some cases to help elucidate the physics. We obtain a phase diagram, discuss the conditions under which the ground state can be described by the Moore-Read state, and study its competition with neighboring stripe phases. We also study quasihole excitations and edge excitations in the Moore-Read-like state. From the evolution of the edge spectrum, we obtain the velocities of the charge and neutral edge modes, which turn out to be very different. This separation of velocities is a source of decoherence for a non-Abelian quasihole and/or quasiparticle (with charge $\ifmmode\pm\else\textpm\fi{}e∕4$) when propagating at the edge; using numbers obtained from a specific set of parameters, we estimate the decoherence length to be around $4\phantom{\rule{0.3em}{0ex}}\ensuremath{\mu}\mathrm{m}$. This sets an upper bound for the separation of the two point contacts in a double point-contact interferometer, designed to detect the non-Abelian nature of such quasiparticles. We also find a state that is a potential candidate for the recently proposed anti-Pfaffian state. We find the speculated anti-Pfaffian state is favored in weak confinement (smooth edge), while the Moore-Read Pfaffian state is favored in strong confinement (sharp edge).

60 citations

Journal ArticleDOI
TL;DR: In this article, exact diagonalization studies on microscopic models of fractional quantum Hall liquids, in finite-size systems with disk geometry, were performed, and numerical evidence of edge reconstruction under rather general conditions.
Abstract: The interplay of electron-electron interaction and confining potential can lead to the reconstruction of fractional quantum Hall edges. We have performed exact diagonalization studies on microscopic models of fractional quantum Hall liquids, in finite-size systems with disk geometry, and found numerical evidence of edge reconstruction under rather general conditions. In the present work we have taken into account effects such as layer thickness and Landau-level mixing, which are found to be of quantitative importance in edge physics. Due to edge reconstruction, additional nonchiral edge modes arise for both incompressible and compressible states. These additional modes couple to electromagnetic fields and thus can be detected in microwave conductivity measurements. They are also expected to affect the exponent of electron Green's function, which has been measured in tunneling experiments. We have studied in this work the electric dipole spectral function that is directly related to the microwave conductivity measurement. Our results are consistent with the enhanced microwave conductivity observed in experiments performed on samples with an array of antidots at low temperatures, and its suppression at higher temperatures. We also discuss the effects of the edge reconstruction on the single-electron spectral function at the edge.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{ u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

4,457 citations

12 Jun 2007
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject using the nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {it Non-Abelian anyons}, meaning that they obey {it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

3,132 citations

Journal ArticleDOI
TL;DR: In this paper, the physics of Anderson transition between localized and metallic phases in disordered systems is reviewed, including both metal-insulator transitions and quantum-Hall-type transitions between phases with localized states.
Abstract: The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed The term ``Anderson transition'' is understood in a broad sense, including both metal-insulator transitions and quantum-Hall-type transitions between phases with localized states The emphasis is put on recent developments, which include: multifractality of critical wave functions, criticality in the power-law random banded matrix model, symmetry classification of disordered electronic systems, mechanisms of criticality in quasi-one-dimensional and two-dimensional systems and survey of corresponding critical theories, network models, and random Dirac Hamiltonians Analytical approaches are complemented by advanced numerical simulations

1,505 citations

Journal ArticleDOI
TL;DR: In this article, the current status of the field of (III,Mn)V diluted magnetic semiconductors is reviewed, focusing on the first two, more mature research directions: the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, and the development of spintronic devices with new functionalities.
Abstract: The body of research on (III,Mn)V diluted magnetic semiconductors initiated during the 1990's has concentrated on three major fronts: i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, ii) the materials science of growth and defects and iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and post-growth treatment techniques have played a central role in the field, often pushing the limits of dilute Mn moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. In the review we focus on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magneto-transport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment.

1,032 citations