scispace - formally typeset
Search or ask a question
Author

Xin Zheng

Bio: Xin Zheng is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: T cell & Hepatitis B virus. The author has an hindex of 19, co-authored 78 publications receiving 3111 citations. Previous affiliations of Xin Zheng include Tongji Medical College & Union Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The characteristics and mechanism of liver injury caused by SARS‐ CoV, MERS‐CoV as well as SARS-CoV‐2 infection were summarized, which may provide help for further studies on the liver injury of COVID‐19.
Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), the pathogen of 2019 novel coronavirus disease (COVID-19), has posed a serious threat to global public health. The WHO has declared the outbreak of SARS-CoV-2 infection an international public health emergency. Lung lesions have been considered as the major damage caused by SARS-CoV-2 infection. However, liver injury has also been reported to occur during the course of the disease in severe cases. Similarly, previous studies have shown that liver damage was common in the patients infected by the other two highly pathogenic coronavirus - severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), and associated with the severity of diseases. In this review, the characteristics and mechanism of liver injury caused by SARS-CoV, MERS-CoV as well as SARS-CoV-2 infection were summarized, which may provide help for further studies on the liver injury of COVID-19.

668 citations

Posted ContentDOI
18 Feb 2020-medRxiv
TL;DR: The degree of lymphopenia and a proinflammatory cytokine storm is higher in severe COVID-19 patients than in mild cases, and is associated with the disease severity.
Abstract: Background The dynamic changes of lymphocyte subsets and cytokines profiles of patients with novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. Method Peripheral blood samples were longitudinally collected from 40 confirmed COVID-19 patients and examined for lymphocyte subsets by flow cytometry and cytokine profiles by specific immunoassays. Findings Of the 40 COVID-19 patients enrolled, 13 severe cases showed significant and sustained decreases in lymphocyte counts but increases in neutrophil counts than 27 mild cases. Further analysis demonstrated significant decreases in the counts of T cells, especially CD8 + T cells, as well as increases in IL-6, IL-10, IL-2 and IFN-γ levels in the peripheral blood in the severe cases compared to those in the mild cases. T cell counts and cytokine levels in severe COVID-19 patients who survived the disease gradually recovered at later time points to levels that were comparable to those of the mild cases. Moreover, the neutrophil-to-CD8+ T cell ratio (N8R) were identified as the most powerful prognostic factor affecting the prognosis for severe COVID-19. Conclusion The degree of lymphopenia and a proinflammatory cytokine storm is higher in severe COVID-19 patients than in mild cases, and is associated with the disease severity. N8R may serve as a useful prognostic factor for early identification of severe COVID-19 cases.

575 citations

Journal ArticleDOI
TL;DR: A brief introduction to the pathology and pathogenesis of SARS‐CoV and MERS‐ coV is provided and extrapolate this knowledge to the newly identified 2019‐nCoV.
Abstract: First reported from Wuhan, The People's Republic of China, on 31 December 2019, the ongoing outbreak of a novel coronavirus (2019-nCoV) causes great global concerns. Based on the advice of the International Health Regulations Emergency Committee and the fact that to date 24 other countries also reported cases, the WHO Director-General declared that the outbreak of 2019-nCoV constitutes a Public Health Emergency of International Concern on 30 January 2020. Together with the other two highly pathogenic coronaviruses, the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), 2019-nCov and other yet to be identified coronaviruses pose a global threat to public health. In this mini-review, we provide a brief introduction to the pathology and pathogenesis of SARS-CoV and MERS-CoV and extrapolate this knowledge to the newly identified 2019-nCoV.

463 citations

Journal ArticleDOI
TL;DR: Inactivation of Sars-CoV-2 by UVC irradiation constitutes a reliable method for disinfection purposes in health care facilities and for preparing SARS-Cov-2 material for research purpose.

284 citations


Cited by
More filters
20 Mar 2020
TL;DR: The effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving, and world governments are at work to establish countermeasures to stem possible devastating effects.
Abstract: According to the World Health Organization (WHO), viral diseases continue to emerge and represent a serious issue to public health In the last twenty years, several viral epidemics such as the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 to 2003, and H1N1 influenza in 2009, have been recorded Most recently, the Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 In a timeline that reaches the present day, an epidemic of cases with unexplained low respiratory infections detected in Wuhan, the largest metropolitan area in China's Hubei province, was first reported to the WHO Country Office in China, on December 31, 2019 Published literature can trace the beginning of symptomatic individuals back to the beginning of December 2019 As they were unable to identify the causative agent, these first cases were classified as "pneumonia of unknown etiology " The Chinese Center for Disease Control and Prevention (CDC) and local CDCs organized an intensive outbreak investigation program The etiology of this illness is now attributed to a novel virus belonging to the coronavirus (CoV) family, COVID-19 On February 11, 2020, the WHO Director-General, Dr Tedros Adhanom Ghebreyesus, announced that the disease caused by this new CoV was a "COVID-19," which is the acronym of "coronavirus disease 2019" In the past twenty years, two additional coronavirus epidemics have occurred SARS-CoV provoked a large-scale epidemic beginning in China and involving two dozen countries with approximately 8000 cases and 800 deaths, and the MERS-CoV that began in Saudi Arabia and has approximately 2,500 cases and 800 deaths and still causes as sporadic cases This new virus seems to be very contagious and has quickly spread globally In a meeting on January 30, 2020, per the International Health Regulations (IHR, 2005), the outbreak was declared by the WHO a Public Health Emergency of International Concern (PHEIC) as it had spread to 18 countries with four countries reporting human-to-human transmission An additional landmark occurred on February 26, 2020, as the first case of the disease, not imported from China, was recorded in the United States Initially, the new virus was called 2019-nCoV Subsequently, the task of experts of the International Committee on Taxonomy of Viruses (ICTV) termed it the SARS-CoV-2 virus as it is very similar to the one that caused the SARS outbreak (SARS-CoVs) The CoVs have become the major pathogens of emerging respiratory disease outbreaks They are a large family of single-stranded RNA viruses (+ssRNA) that can be isolated in different animal species For reasons yet to be explained, these viruses can cross species barriers and can cause, in humans, illness ranging from the common cold to more severe diseases such as MERS and SARS Interestingly, these latter viruses have probably originated from bats and then moving into other mammalian hosts — the Himalayan palm civet for SARS-CoV, and the dromedary camel for MERS-CoV — before jumping to humans The dynamics of SARS-Cov-2 are currently unknown, but there is speculation that it also has an animal origin The potential for these viruses to grow to become a pandemic worldwide seems to be a serious public health risk Concerning COVID-19, the WHO raised the threat to the CoV epidemic to the "very high" level, on February 28, 2020 Probably, the effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving World governments are at work to establish countermeasures to stem possible devastating effects Health organizations coordinate information flows and issues directives and guidelines to best mitigate the impact of the threat At the same time, scientists around the world work tirelessly, and information about the transmission mechanisms, the clinical spectrum of disease, new diagnostics, and prevention and therapeutic strategies are rapidly developing Many uncertainties remain with regard to both the virus-host interac ion and the evolution of the epidemic, with specific reference to the times when the epidemic will reach its peak At the moment, the therapeutic strategies to deal with the infection are only supportive, and prevention aimed at reducing transmission in the community is our best weapon Aggressive isolation measures in China have led to a progressive reduction of cases in the last few days In Italy, in geographic regions of the north of the peninsula, political and health authorities are making incredible efforts to contain a shock wave that is severely testing the health system In the midst of the crisis, the authors have chosen to use the "Statpearls" platform because, within the PubMed scenario, it represents a unique tool that may allow them to make updates in real-time The aim, therefore, is to collect information and scientific evidence and to provide an overview of the topic that will be continuously updated

2,161 citations

DOI
01 Jan 2020

1,967 citations

Journal ArticleDOI
TL;DR: It is proposed that serum IL-6 and TNF-α levels should be considered in the management and treatment of patients with COVID-19 to stratify prospective clinical trials, guide resource allocation and inform therapeutic options.
Abstract: Several studies have revealed that the hyper-inflammatory response induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major cause of disease severity and death. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α and IL-1β in hospitalized patients with coronavirus disease 2019 (COVID-19) upon admission to the Mount Sinai Health System in New York. Patients (n = 1,484) were followed up to 41 d after admission (median, 8 d), and clinical information, laboratory test results and patient outcomes were collected. We found that high serum IL-6, IL-8 and TNF-α levels at the time of hospitalization were strong and independent predictors of patient survival (P < 0.0001, P = 0.0205 and P = 0.0140, respectively). Notably, when adjusting for disease severity, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF-α serum levels remained independent and significant predictors of disease severity and death. These findings were validated in a second cohort of patients (n = 231). We propose that serum IL-6 and TNF-α levels should be considered in the management and treatment of patients with COVID-19 to stratify prospective clinical trials, guide resource allocation and inform therapeutic options. Elevated levels of serum IL-6 and TNF-α at the time of hospitalization are independent and significant predictors of clinical outcome in two cohorts of patients with COVID-19.

1,689 citations

Journal ArticleDOI
Nicolas Vabret1, Graham J. Britton1, Conor Gruber1, Samarth Hegde1, Joel Kim1, Maria Kuksin1, Rachel Levantovsky1, Louise Malle1, Alvaro Moreira1, Matthew D. Park1, Luisanna Pia1, Emma Risson1, Miriam Saffern1, Bérengère Salomé1, Myvizhi Esai Selvan1, Matthew P. Spindler1, Jessica Tan1, Verena van der Heide1, Jill Gregory1, Konstantina Alexandropoulos1, Nina Bhardwaj1, Brian D. Brown1, Benjamin Greenbaum1, Zeynep H. Gümüş1, Dirk Homann1, Amir Horowitz1, Alice O. Kamphorst1, Maria A. Curotto de Lafaille1, Saurabh Mehandru1, Miriam Merad1, Robert M. Samstein1, Manasi Agrawal, Mark Aleynick, Meriem Belabed, Matthew Brown1, Maria Casanova-Acebes, Jovani Catalan, Monica Centa, Andrew Charap, Andrew K Chan, Steven T. Chen, Jonathan Chung, Cansu Cimen Bozkus, Evan Cody, Francesca Cossarini, Erica Dalla, Nicolas F. Fernandez, John A. Grout, Dan Fu Ruan, Pauline Hamon, Etienne Humblin, Divya Jha, Julia Kodysh, Andrew Leader, Matthew Lin, Katherine E. Lindblad, Daniel Lozano-Ojalvo, Gabrielle Lubitz, Assaf Magen, Zafar Mahmood2, Gustavo Martinez-Delgado, Jaime Mateus-Tique, Elliot Meritt, Chang Moon1, Justine Noel, Timothy O'Donnell, Miyo Ota, Tamar Plitt, Venu Pothula, Jamie Redes, Ivan Reyes Torres, Mark P. Roberto, Alfonso R. Sanchez-Paulete, Joan Shang, Alessandra Soares Schanoski, Maria Suprun, Michelle Tran, Natalie Vaninov, C. Matthias Wilk, Julio A. Aguirre-Ghiso, Dusan Bogunovic1, Judy H. Cho, Jeremiah J. Faith, Emilie K. Grasset, Peter S. Heeger, Ephraim Kenigsberg, Florian Krammer1, Uri Laserson1 
16 Jun 2020-Immunity
TL;DR: The current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death are summarized.

1,350 citations