scispace - formally typeset
Search or ask a question
Author

Xinchen Wang

Bio: Xinchen Wang is an academic researcher from Fuzhou University. The author has contributed to research in topics: Carbon nitride & Photocatalysis. The author has an hindex of 120, co-authored 349 publications receiving 65072 citations. Previous affiliations of Xinchen Wang include King Abdulaziz University & University of Science and Technology of China.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap.
Abstract: In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of ‘post-silicon electronics’ Carbon nitrides are potentially cheap and metal-free alternatives for catalysts, semiconductors, battery materials and memory devices In this Review, we discuss the synthesis, design and morphology of these materials, and reflect on the ability of methods such as templating, etching, dye sensitization, heteroatom doping and co-polymerization, as well as the assembly of various heterojunctions, to improve device performance

705 citations

Journal ArticleDOI
TL;DR: In this paper, a facile synthesis of mesoporous g-CN using molecular cooperative assembly between triazine molecules is reported, which is a promising heterogeneous metal-free catalyst for organic photosynthesis, solar energy conversion, and photodegradation of pollutants.
Abstract: Graphitic carbon nitride (g-CN) is a promising heterogeneous metal-free catalyst for organic photosynthesis, solar energy conversion, and photodegradation of pollutants. Its catalytic performance is easily adjustable by modifying texture, optical, and electronic properties via nanocasting, doping, and copolymerization. However, simultaneous optimization has yet to be achieved. Here, a facile synthesis of mesoporous g-CN using molecular cooperative assembly between triazine molecules is reported. Flower-like, layered spherical aggregates of melamine cyanuric acid complex (MCA) are formed by precipitation from equimolecular mixtures in dimethyl sulfoxide (DMSO). Thermal polycondensation of MCA under nitrogen at 550 °C produces mesoporous hollow spheres comprised of tri-s-triazine based g-CN nanosheets (MCA-CN) with the composition of C3N4.14H1.98. The layered structure succeeded from MCA induces stronger optical absorption, widens the bandgap by 0.16 eV, and increases the lifetime of photoexcited charge carriers by twice compared to that of the bulk g-CN, while the chemical structure remains similar to that of the bulk g-CN. As a result of these simultaneous modifications, the photodegradation kinetics of rhodamine B on the catalyst surface can be improved by 10 times.

691 citations

Journal ArticleDOI
TL;DR: It was found that protonation not only provides better dispersion and exposes a high surface area for g-C(3)N(4) but also enables an adjustment of electronic band gaps and higher ionic conductivity.
Abstract: Covalently bonded carbon nitride materials (e.g., g-C(3)N(4)) have numerous potential applications ranging from semiconductors to fuel cells. But their solubility is poor, which makes characterization and processing difficult. Moreover, the chemistry of the as-synthesized carbon nitrides has been widely neglected. Here we report that some of these handicaps might be overcome by a controllable and reversible protonation. It was found that protonation not only provides better dispersion and exposes a high surface area for g-C(3)N(4) but also enables an adjustment of electronic band gaps and higher ionic conductivity. Recovery or deprotonation toward the original g-C(3)N(4) could be obtained by simple heating, which enables improved sintering but also a potential preservation of the higher surface area of the protonated material. This proton-enhanced sintering process allowed for the first time direct measurement of the photoconductivity of the material. By aid of protonation, other promising g-C(3)N(4) based hybrid composites could also be facilely obtained by simple counteranion exchange.

678 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

6,252 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations