scispace - formally typeset
Search or ask a question
Author

Xinchen Wang

Bio: Xinchen Wang is an academic researcher from Fuzhou University. The author has contributed to research in topics: Carbon nitride & Photocatalysis. The author has an hindex of 120, co-authored 349 publications receiving 65072 citations. Previous affiliations of Xinchen Wang include King Abdulaziz University & University of Science and Technology of China.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a crystalline tri-s-triazine-based graphitic carbon nitride (g-CN) was synthesized for hydrogen and oxygen production from water splitting.
Abstract: Graphitic carbon nitride (g-CN) is an emerging metal-free photocatalyst for solar energy conversion via water splitting and CO2 fixation. Herein, we used preheated melamine as a starting material in combination with the salt melt method to synthesize a crystalline tri-s-triazine-based g-CN. The as-obtained sample exhibited high stability and photocatalytic activity toward hydrogen and oxygen production from water splitting. In addition, by adding phosphate to mimic natural photosynthetic environment, the apparent quantum yield (AQY) for the hydrogen production reached 50.7% at 405 nm, which is the highest value ever reported for conjugated carbon nitride polymers in hydrogen evolution photocatalysis. The results of this study demonstrate that crystalline covalent tri-s-triazine frameworks hold great promise for solar energy applications.

677 citations

Journal ArticleDOI
TL;DR: Sulfur-mediated synthesis has been developed to modify the texture, optical and electronic properties, as well as the photocatalytic functions of a carbon nitride semiconductor.
Abstract: Sulfur-mediated synthesis has been developed to modify the texture, optical and electronic properties, as well as the photocatalytic functions of a carbon nitride semiconductor. The water oxidation reaction has been achieved at a moderate rate with only photocatalysts without the aid of co-factors.

674 citations

Journal ArticleDOI
TL;DR: Graphitic carbon nitride (g-C3N4) with a band gap of 2.7 eV is studied as a nonmetallic photocatalyst for H2 or O2 evolution from water under ultraviolet (UV) and visible light.
Abstract: Graphitic carbon nitride (g-C3N4) with a band gap of 2.7 eV is studied as a nonmetallic photocatalyst for H2 or O2 evolution from water under ultraviolet (UV) and visible light. The g-C3N4 catalyst exhibits activities for water reduction into H2 or water oxidation into O2 in the presence of a proper sacrificial electron donor or acceptor, respectively, even without the need for precious metal cocatalysts. When bis(1,5-cyclooctadiene)platinum complex [Pt(cod)2] (a nonionic complex) is used as a precursor of Pt cocatalyst instead of H2PtCl6 (an ionic complex), enhanced H2 evolution activity is acquired. This difference in activity is primarily due to the better dispersion of Pt nanoparticles on g-C3N4, which is considered to originate from the better access of Pt(cod)2 to the g-C3N4 surface, as compared to that of H2PtCl6 in the preparation process. Unmodified g-C3N4 produces O2 from an aqueous silver nitrate solution upon UV irradiation (λ > 300 nm), although N2 release due to self-decomposition of g-C3N4 ...

673 citations

Journal ArticleDOI
TL;DR: Shape engineering of a g-C3 N4 framework, with interconnecting nanosheets and highly open-up spherical surfaces with sharp edges, can easily accelerate charge separation and promote mass transfer for photoredox catalysis.
Abstract: Shape engineering of a g-C3 N4 framework, with interconnecting nanosheets and highly open-up spherical surfaces with sharp edges, can easily accelerate charge separation and promote mass transfer for photoredox catalysis, achieving an apparent quantum yield of 9.6% at 420 nm in an assay of the photocatalytic hydrogen evolution reaction.

657 citations

Journal ArticleDOI
TL;DR: A brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties.
Abstract: Conjugated polymers, comprising fully π-conjugated systems, present a new generation of heterogeneous photocatalysts for solar-energy utilization. They have three key features, namely robustness, nontoxicity, and visible-light activity, for photocatalytic processes, thus making them appealing candidates for scale-up. Presented in this Minireview, is a brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, including linear polymers, planarized polymers, triazine/heptazine polymers, and other related organic conjugated semiconductors, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties. Some future trends and prospects for organic conjugated photocatalysts in artificial photosynthesis, by water splitting, are also envisaged.

642 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

6,252 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations