scispace - formally typeset
Search or ask a question
Author

Xing-Jiu Huang

Bio: Xing-Jiu Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Adsorption & Nanoparticle. The author has an hindex of 64, co-authored 262 publications receiving 13115 citations. Previous affiliations of Xing-Jiu Huang include Anhui Polytechnic University & Wuhan University of Technology.


Papers
More filters
Journal ArticleDOI
Xing-Jiu Huang1, Yang-Kyu Choi1
TL;DR: A comprehensive review of current research activities that concentrate on chemical sensors based on nanotubes, nanorods, nanobelts, and nanowires can be found in this paper.
Abstract: This article provides a comprehensive review of current research activities that concentrate on chemical sensors based on nanotubes, nanorods, nanobelts, and nanowires. We devote the most attention on the experimental principle, design of sensing devices, sensing mechanism, and some important conclusions. We elaborate on development of chemical sensors based on nanostructured materials in the following four sections: (1) nanotube sensors; (2) nanorod sensors; (3) nanobelt sensors; (4) nanowire sensors. We conclude this review with personal perspectives on the directions towards which future research on nanostructured sensors might be directed.

626 citations

Journal ArticleDOI
TL;DR: It is shown here that a FET biosensor with a vertical gap is sensitive to the specific binding of streptavidin to biotin, and believes that the dielectric-modulated FET (DMFET) provides a useful approach towards biomolecular detection that could be extended to a number of other systems.
Abstract: Interest in biosensors based on field-effect transistors (FETs), where an electrically operated gate controls the flow of charge through a semiconducting channel, is driven by the prospect of integrating biodetection capabilities into existing semiconductor technology. In a number of proposed FET biosensors, surface interactions with biomolecules in solution affect the operation of the gate or the channel. However, these devices often have limited sensitivity. We show here that a FET biosensor with a vertical gap is sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin changes the dielectric constant (and capacitance) of the gate, resulting in a large shift in the threshold voltage for operating the FET. The vertical gap is fabricated using simple thin-film deposition and wet-etching techniques. This may be an advantage over planar nanogap FETs, which require lithographic processing. We believe that the dielectric-modulated FET (DMFET) provides a useful approach towards biomolecular detection that could be extended to a number of other systems.

425 citations

Journal ArticleDOI
TL;DR: In this paper, a well-known gas sensing material SnO2 in combination with reduced graphene oxide was used in heavy metal ions detection for the first time, which could be used for the simultaneous and selective electrochemical detection of ultratrace Cd(II), Pb(II, Cu(II) and Hg(II).
Abstract: A well-known gas sensing material SnO2 in combination with reduced graphene oxide was used in heavy metal ions detection for the first time. This work reports the detailed study on the SnO2/reduced graphene oxide nanocomposite modified glass carbon electrode, which could be used for the simultaneous and selective electrochemical detection of ultratrace Cd(II), Pb(II), Cu(II), and Hg(II) in drinking water. The SnO2/reduced graphene oxide nanocomposite electrode was characterized voltammetrically using redox couples (Fe(CN)63–/4–), complemented with electrochemical impedance spectroscopy (EIS). Square wave anodic stripping voltammetry (SWASV) has been used for the detection of Cd(II), Pb(II), Cu(II), and Hg(II). The detection limit (3σ method) of the SnO2/reduced graphene oxide nanocomposite modified GCE toward Cd(II), Pb(II), Cu(II) and Hg(II) is 1.015 × 10–10 M, 1.839 × 10–10 M, 2.269 × 10–10 M, and 2.789 × 10–10 M, respectively, which is very well below the guideline value given by the World Health Organ...

415 citations

Journal ArticleDOI
TL;DR: Systematic investigation discloses that the exposed {112} facets are crucial for activating CO2 molecules, giving rise to significant enhancement of photocatalytic CO2 reduction efficiency.
Abstract: A heterogeneous catalyst made of well-defined Co3 O4 hexagonal platelets with varied exposed facets is coupled with [Ru(bpy)3 ]Cl2 photosensitizers to effectively and efficiently reduce CO2 under visible-light irradiation Systematic investigation based on both experiment and theory discloses that the exposed {112} facets are crucial for activating CO2 molecules, giving rise to significant enhancement of photocatalytic CO2 reduction efficiency

363 citations

Journal ArticleDOI
Xing-Jiu Huang1, Yang-Kyu Choi1, Hyungsoon Im1, Oktay Yarimaga1, Euisik Yoon1, Hak-Sung Kim1 
01 Jul 2006-Sensors
TL;DR: A comprehensive review of research activities that concentrate on AST/GOT and alanine aminotransferase (ALT/GPT) detection techniques due to their clinical importance is provided in this article.
Abstract: The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

350 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent progress in improving and understanding the electrochemical performance of various alloy anodes, and the causes of first-cycle irreversible capacity loss are discussed.

1,857 citations

Journal ArticleDOI
01 Mar 2008-Langmuir
TL;DR: Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state.
Abstract: Hierarchical micropapillae and nanofolds are known to exist on the petals' surfaces of red roses. These micro- and nanostructures provide a sufficient roughness for superhydrophobicity and yet at the same time a high adhesive force with water. A water droplet on the surface of the petal appears spherical in shape, which cannot roll off even when the petal is turned upside down. We define this phenomenon as the “petal effect” as compared with the popular “lotus effect”. Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state.

1,617 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent progress dedicated to the anode and cathode materials that have the potential to fulfil the crucial factors of cost, safety, lifetime, durability, power density, and energy density is presented.
Abstract: In order to address power and energy demands of mobile electronics and electric cars, Li-ion technology is urgently being optimized by using alternative materials. This article presents a review of our recent progress dedicated to the anode and cathode materials that have the potential to fulfil the crucial factors of cost, safety, lifetime, durability, power density, and energy density. Nanostructured inorganic compounds have been extensively investigated. Size effects revealed in the storage of lithium through micropores (hard carbon spheres), alloys (Si, SnSb), and conversion reactions (Cr(2)O(3), MnO) are studied. The formation of nano/micro core-shell, dispersed composite, and surface pinning structures can improve their cycling performance. Surface coating on LiCoO(2) and LiMn(2)O(4) was found to be an effective way to enhance their thermal and chemical stability and the mechanisms are discussed. Theoretical simulations and experiments on LiFePO(4) reveal that alkali metal ions and nitrogen doping into the LiFePO(4) lattice are possible approaches to increase its electronic conductivity and does not block transport of lithium ion along the 1D channel.

1,596 citations