scispace - formally typeset
Search or ask a question
Author

Xing Kang

Bio: Xing Kang is an academic researcher from Shanxi Medical University. The author has contributed to research in topics: Gut flora & Autoimmune hepatitis. The author has an hindex of 1, co-authored 2 publications receiving 3 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum.
Abstract: Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.

26 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper reviewed the latest research to examine the association of gut microbiota with Parkinson's disease and the future prospects of FMT treatment, and suggested the protective and pathogenic effects of certain gut microbial species on PD progression.
Abstract: Parkinson's disease (PD) ranks the second place among neurodegenerative diseases in terms of its morbidity, which affects 1-2% people aged over 65 years. In addition to genetics, some environmental factors may exert vital parts in PD occurrence as well. At present, more and more studies are conducted to elucidate the association between gut microbial dysbiosis and the incidence of PD. Gut microbial dysbiosis has a certain effect on both the central nervous system (CNS) and the enteric nervous system (ENS), which indicates that there is a gut-microbiota-brain axis that induces CNS disorders. Some gut microbial strains are suggested to suppress or weaken the neuroinflammation- and gut-inflammation-immune responses, which suggests the protective and pathogenic effects of certain gut microbial species on PD progression. Therefore, gut microbiome may contain plenty of targets for preventing and managing PD. Faecal microbiota transplantation (FMT) may serve as a direct and useful treatment for PD in the future. Nonetheless, there is little available scientific research in this field. The present work reviewed the latest research to examine the association of gut microbiota with PD, and the future prospects of FMT treatment.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The changes seen in the gut microbiome in liver diseases and the association between gut dysbiosis and liver disease are described, and treatment options that may improve gut Dysbiosis in patients with liver diseases are explored.
Abstract: The gut microbiota composition is important for nutrient metabolism, mucosal barrier function, immunomodulation, and defense against pathogens. Alterations in the gut microbiome can disturb the gut ecosystem. These changes may lead to the loss of beneficial bacteria or an increase in potentially pathogenic bacteria. Furthermore, these have been shown to contribute to the pathophysiology of gastrointestinal and extra-intestinal diseases. Pathologies of the liver, such as non-alcoholic liver disease, alcoholic liver disease, cirrhosis, hepatocellular carcinoma, autoimmune hepatitis, viral hepatitis, and primary sclerosing cholangitis have all been linked to changes in the gut microbiome composition. There is substantial evidence that links gut dysbiosis to the progression and complications of these pathologies. This review article aimed to describe the changes seen in the gut microbiome in liver diseases and the association between gut dysbiosis and liver disease, and finally, explore treatment options that may improve gut dysbiosis in patients with liver disease.

13 citations

Journal ArticleDOI
TL;DR: The role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases, metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer was reviewed from the perspective of immune mechanism.
Abstract: Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.

10 citations

Journal ArticleDOI
TL;DR: The increasing trend of the aerobic bacteria abundance in both AIH patients and AIH mice models is summarized, and the combination of specific bacteria species was found distinct toAIH patients, which could be a promising tool for diagnosing AIH.
Abstract: Autoimmune hepatitis (AIH) is a chronic immune-mediated liver disease distributed globally in all ethnicities with increasing prevalence. If left untreated, the disease will lead to cirrhosis, liver failure, or death. The intestinal microbiota is a complex ecosystem located in the human intestine, which extensively affects the human physiological and pathological processes. With more and more in-depth understandings of intestinal microbiota, a substantial body of studies have verified that the intestinal microbiota plays a crucial role in a variety of digestive system diseases, including alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). However, only a few studies have paid attention to evaluate the relationship between AIH and the intestinal microbiota. While AIH pathogenesis is not fully elucidated yet, some studies have indicated that intestinal microbiota putatively made significant contributions to the occurrence and the development of AIH by triggering several specific signaling pathways, altering the metabolism of intestinal microbiota, as well as modulating the immune response in the intestine and liver. By collecting the latest related literatures, this review summarized the increasing trend of the aerobic bacteria abundance in both AIH patients and AIH mice models. Moreover, the combination of specific bacteria species was found distinct to AIH patients, which could be a promising tool for diagnosing AIH. In addition, there were alterations of luminal metabolites and immune responses, including decreased short-chain fatty acids (SCFAs), increased pathogen associated molecular patterns (PAMPs), imbalanced regulatory T (Treg)/Th17 cells, follicular regulatory T (TFR)/follicular helper T (TFH) cells, and activated natural killer T (NKT) cells. These alterations participate in the onset and the progression of AIH via multiple mechanisms. Therefore, some therapeutic methods based on restoration of intestinal microbiota composition, including probiotics and fecal microbiota transplantation (FMT), as well as targeted intestinal microbiota-associated signaling pathways, confer novel insights into the treatment for AIH patients.

8 citations

Journal ArticleDOI
TL;DR: Genetic susceptibility to autoimmune liver diseases is conferred mainly by polymorphisms of genes encoding for the human leukocyte antigens (HLA), with the strongest predisposition to autoimmune hepatitis type 1 (AIH-1) linked to the allele DRB1*03:01, possession of which is associated with earlier disease onset and more severe course.
Abstract: Genetic susceptibility to autoimmune liver diseases is conferred mainly by polymorphisms of genes encoding for the human leukocyte antigens (HLA). The strongest predisposition to autoimmune hepatitis type 1 (AIH-1) is linked to the allele DRB1*03:01, possession of which is associated with earlier disease onset and more severe course. In populations where this allele is very rare, such as in Asia, and in DRB1*03-negative patients, risk of AIH-1 is conferred by DRB1*04, which is associated with later disease onset and milder phenotype. AIH type 2 (AIH-2) is associated with DRB1*07. The pediatric condition referred to as autoimmune sclerosing cholangitis (ASC), is associated with the DRB1*13 in populations of Northern European ancestry. DRB1*1501 is protective from AIH-1, AIH-2 and ASC in Northern European populations. Possession of the DRB1*08 allele is associated with an increased risk of primary biliary cholangitis (PBC) across different populations. DRB1*03:01 and B*08:01 confer susceptibility to primary sclerosing cholangitis (PSC), as well as DRB1*13 and DRB1*15 in Europe. The hepatic blood supply is largely derived from the splanchnic circulation, suggesting a pathophysiological role of the gut microbiome. AIH appears to be associated with dysbiosis, increased gut permeability, and translocation of intestinal microbial products into the circulation; molecular mimicry between microbial and host antigens may trigger an autoaggressive response in genetically-predisposed individuals. In PBC an altered enteric microbiome may affect intestinal motility, immunological function and bile secretion. Patients with PSC have a gut microbial profile different from health as well as from patients with inflammatory bowel disease without PSC.

7 citations

Journal ArticleDOI
TL;DR: In this paper , a review aims to summarize the recent literature as an aid to better understand how the alteration of gut microbiota composition contributes to insomnia while evaluating and prospecting the therapeutic effect of modulating gut microbiota in the treatment of insomnia based on previous publications.

6 citations