scispace - formally typeset
Search or ask a question
Author

Xing-yan Liu

Bio: Xing-yan Liu is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Single-nucleotide polymorphism & SNP. The author has an hindex of 7, co-authored 8 publications receiving 318 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Examining the effect of SCI on Bcl‐xL expression found it could become clinically relevant in preserving sensory and motor functions after SCI and significantly increased neuronal survival, suggesting that SCI‐induced changes in Bcl-xL contribute considerably to neuronal death.
Abstract: Spinal cord injury (SCI) induces neuronal death, including apoptosis, which is completed within 24 hr at and around the impact site. We identified early proapoptotic transcriptional changes, including upregulation of proapoptotic Bax and downregulation of antiapoptotic Bcl-xL, Bcl-2, and Bcl-w, using Affymetrix DNA microarrays. Because Bcl-xL is the most robustly expressed antiapoptotic Bcl-2 molecule in adult central nervous system, we decided to characterize better the effect of SCI on Bcl-xL expression. We found Bcl-xL expressed robustly throughout uninjured spinal cord in both neurons and glia cells. We also found Bcl-xL localized in different cellular compartments: cytoplasmic, mitochondrial, and nuclear. Bcl-xL protein levels decreased in the cytoplasm and mitochondria 2 hr after SCI and persisted for 24 hr. To test the contribution of proapoptotic decreases in Bcl-xL to neuronal death, we augmented endogenous Bcl-xL levels by administering Bcl-xL fusion protein (Bcl-xL FP) into injured spinal cords. Bcl-xL FP significantly increased neuronal survival, suggesting that SCI-induced changes in Bcl-xL contribute considerably to neuronal death. Because Bcl-xL FP increases survival of dorsal horn neurons and ventral horn motoneurons, it could become clinically relevant in preserving sensory and motor functions after SCI.

74 citations

Journal ArticleDOI
TL;DR: The results suggest that ZNF804A is a common risk gene for schizophrenia in world populations and that the newly identified functional SNP (rs359895) is likely a risk SNP for schizophrenia.
Abstract: Objective:ZNF804A is a schizophrenia risk gene that was recently identified by genome-wide association studies as well as subsequent replications. Although the results are consistent among studies in European populations, there have been conflicting reports in Chinese populations. The authors conducted both association and functional analyses to test whether ZNF804A is a risk gene for schizophrenia in Chinese populations. Method:The authors recruited two case-control samples of independent Han Chinese (a total of 2,207 participants) from southwestern China. A total of six single-nucleotide polymorphisms (SNPs), including the key SNP (rs1344706) that showed significant association with schizophrenia in European populations and the other five promoter SNPs of ZNF804A, were tested. Based on the results of the association analysis, the authors performed two functional assays to test the impact of the risk SNP on transcriptional factor binding affinity and promoter activity. Results:The SNP rs1344706 was not a...

72 citations

Journal ArticleDOI
TL;DR: It is concluded that IGF‐I‐induced reductions in immune cell responses can occur in the absence of demyelination and are of major importance in decreasing clinical deficits and lesion severity in EAE.
Abstract: To test the effects of insulin-like growth factor-I (IGF-I) on clinical deficits, lesion severity, and immune cell response in acute, non-demyelinative experimental autoimmune encephalomyelitis (EAE), we induced EAE in Lewis rats by passive transfer of an MBP-reactive T lymphocyte line. Four days after receiving 5 x 10(5) MBPL-1 T cells intravenously, ten pairs of rats had the same mild degree of tail and hind limb weakness. Ten were given 300 micrograms IGF-I i.v. twice daily for 6 days, and the other 10 received the same volume of 0.89% NaCl. Pairs of rats were sacrificed after 4 days and 6 days of IGF-I and placebo treatment and spinal cord sections were processed for immunostaining, in situ hybridization, and morphological examination. IGF-I treatment decreased clinical deficits, lesion numbers, and lesion areas significantly. Numbers of CD4-positive T cells, alpha/beta TCR-positive cells, and ED-1-positive macrophages were also significantly reduced by IGF-I treatment. Similar reductions were found in our second trial, when 11 days of placebo and IGF-I injections began the day after transfer. No demyelination was observed in either toluidine blue-stained semithin sections or sections immunostained with an antibody raised against myelin basic protein (MBP). We conclude that IGF-I-induced reductions in immune cell responses can occur in the absence of demyelination and are of major importance in decreasing clinical deficits and lesion severity in EAE. If IGF-I has similar effects in multiple sclerosis, we think that it will be useful therapeutically.

55 citations

Journal ArticleDOI
TL;DR: The findings suggest that GSK3β is likely a risk gene for schizophrenia, and its expression alteration caused by the risk SNP in the promoter region may contribute to the etiology of schizophrenia.

41 citations

Journal ArticleDOI
TL;DR: It is suggested that ZNF804A may also contribute to schizophrenia susceptibility in Asians although the risk SNP is different from that in Europeans, and this suggests the compounding difficulty of genetic studies of complex diseases like schizophrenia when studying multiple ethnic populations.
Abstract: ZNF804A, a recently identified risk gene for schizophrenia, has been extensively investigated and the principle finding for this locus has been the association with SNP rs1344706 in populations of European ancestries. However, in Asian populations, only a few studies have been conducted for rs1344706 and the results were inconsistent. Here, we studied rs1344706 and schizophrenia susceptibility in multiple Asian case–control samples (10 Chinese and 2 Japanese samples; N = 21,062), and the meta-analyses indicated non-significant association of rs1344706 with schizophrenia (P = 0.26), suggesting the same SNP identified in European samples is not predisposing risk in Asians. Further genotyping and association analyses of a set of SNPs spanning the entire genomic region of ZNF804A (520 kb) identified no association except for SNP rs359895 (P = 7.8 × 10−5, N = 5,172), a newly reported risk SNP located in the ZNF804A promoter region with functional implications. This suggests that ZNF804A may also contribute to schizophrenia susceptibility in Asians although the risk SNP is different from that in Europeans, and it was supported by the detected up-regulation of ZNF804A mRNA expression in the blood cells of Chinese schizophrenia patients compared with normal controls (P = 0.004). Additionally, the linkage disequilibrium (LD) structure analyses using data from HapMap indicated distinct LD blocks across ZNF804A between Chinese and Europeans, which may explain the different association patterns between them, and also highlight the compounding difficulty of genetic studies of complex diseases like schizophrenia when studying multiple ethnic populations. © 2012 Wiley Periodicals, Inc.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations

Journal ArticleDOI
TL;DR: The mechanisms of remyelination provide critical clues for regeneration biologists that help them to determine why remYelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.
Abstract: Remyelination involves reinvesting demyelinated axons with new myelin sheaths. In stark contrast to the situation that follows loss of neurons or axonal damage, remyelination in the CNS can be a highly effective regenerative process. It is mediated by a population of precursor cells called oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, despite its efficiency in experimental models and in some clinical diseases, remyelination is often inadequate in demyelinating diseases such as multiple sclerosis (MS), the most common demyelinating disease and a cause of neurological disability in young adults. The failure of remyelination has profound consequences for the health of axons, the progressive and irreversible loss of which accounts for the progressive nature of these diseases. The mechanisms of remyelination therefore provide critical clues for regeneration biologists that help them to determine why remyelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.

1,325 citations

Journal ArticleDOI
TL;DR: In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells and studies of transgenic mice overexpressing components of the IGFsystem or mice with disruptions of the same genes have clearly shown thatThe IGF system plays a key role in vivo.
Abstract: In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.

443 citations

Journal ArticleDOI
TL;DR: The authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries.
Abstract: Melatonin is mainly produced in the mammalian pineal gland during the dark phase. Its secretion from the pineal gland has been classically associated with circadian and circanual rhythm regulation. However, melatonin production is not confined exclusively to the pineal gland, but other tissues including retina, Harderian glands, gut, ovary, testes, bone marrow and lens also produce it. Several studies have shown that melatonin reduces chronic and acute inflammation. The immunomodulatory properties of melatonin are well known; it acts on the immune system by regulating cytokine production of immunocompetent cells. Experimental and clinical data showing that melatonin reduces adhesion molecules and pro-inflammatory cytokines and modifies serum inflammatory parameters. As a consequence, melatonin improves the clinical course of illnesses which have an inflammatory etiology. Moreover, experimental evidence supports its actions as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes, enhancing the activities of other antioxidants or protecting other antioxidant enzymes from oxidative damage. Several encouraging clinical studies suggest that melatonin is a neuroprotective molecule in neurodegenerative disorders where brain oxidative damage has been implicated as a common link. In this review, the authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries (traumatic brain and spinal cord injury)

320 citations

Journal ArticleDOI
TL;DR: Findings that immune cells produce brain‐derived neurotrophic factor in multiple sclerosis lesions, whereas neurons and astrocytes express the appropriate tyrosine kinase receptor TrkB support the concept of “neuroprotective immunity.”
Abstract: Inflammatory reactions in the central nervous system usually are considered detrimental, but recent evidence suggests that they also can be beneficial and even have neuroprotective effects. Intriguingly, immune cells can produce various neurotrophic factors of various molecular families. The concept of "neuroprotective immunity" will have profound consequences for the pathogenesis and treatment of neuroinflammatory diseases such as multiple sclerosis. It also will prove important for neurodegenerative disorders, in which inflammatory reactions often occur. This review focuses on recent findings that immune cells produce brain-derived neurotrophic factor in multiple sclerosis lesions, whereas neurons and astrocytes express the appropriate tyrosine kinase receptor TrkB. Together with functional evidence for the neuroprotective effects of immune cells, these observations support the concept of "neuroprotective immunity." We next examine current and future therapeutic strategies for multiple sclerosis and experimental autoimmune encephalomyelitis in light of neuroprotective immunity and finally address the broader implications of this new concept for other neuroinflammatory and neurodegenerative diseases.

265 citations