scispace - formally typeset
Search or ask a question
Author

Xingguo Zhang

Bio: Xingguo Zhang is an academic researcher. The author has contributed to research in topics: Respiratory distress & Coronavirus. The author has an hindex of 3, co-authored 3 publications receiving 247 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A period of 7–13 days after illness onset is the critical stage in the COVID-19 course, which shows persistent lymphopenia, severe acute respiratory dyspnea syndrome, refractory shock, anuric acute kidney injury, coagulopathy, thrombocytopenia, and death.
Abstract: In December 2019, coronavirus disease 2019 (COVID-19) outbreak was reported from Wuhan, China. Information on the clinical course and prognosis of COVID-19 was not thoroughly described. We described the clinical courses and prognosis in COVID-19 patients. Retrospective case series of COVID-19 patients from Zhongnan Hospital of Wuhan University in Wuhan and Xishui Hospital, Hubei Province, China, up to February 10, 2020. Epidemiological, demographic, and clinical data were collected. The clinical course of survivors and non-survivors were compared. Risk factors for death were analyzed. A total of 107 discharged patients with COVID-19 were enrolled. The clinical course of COVID-19 presented as a tri-phasic pattern. Week 1 after illness onset was characterized by fever, cough, dyspnea, lymphopenia, and radiological multi-lobar pulmonary infiltrates. In severe cases, thrombocytopenia, acute kidney injury, acute myocardial injury, and adult respiratory distress syndrome were observed. During week 2, in mild cases, fever, cough, and systemic symptoms began to resolve and platelet count rose to normal range, but lymphopenia persisted. In severe cases, leukocytosis, neutrophilia, and deteriorating multi-organ dysfunction were dominant. By week 3, mild cases had clinically resolved except for lymphopenia. However, severe cases showed persistent lymphopenia, severe acute respiratory dyspnea syndrome, refractory shock, anuric acute kidney injury, coagulopathy, thrombocytopenia, and death. Older age and male sex were independent risk factors for poor outcome of the illness. A period of 7–13 days after illness onset is the critical stage in the COVID-19 course. Age and male gender were independent risk factors for death of COVID-19.

288 citations

Journal ArticleDOI
TL;DR: Early initiation of corticosteroid use (≤ 3 days after ICU admission) was associated with an increased 90-day mortality and early use of methylprednisolone in the ICU is therefore not recommended in patients with severe COVID-19.
Abstract: Corticoid therapy has been recommended in the treatment of critically ill patients with COVID-19, yet its efficacy is currently still under evaluation. We investigated the effect of corticosteroid treatment on 90-day mortality and SARS-CoV-2 RNA clearance in severe patients with COVID-19. 294 critically ill patients with COVID-19 were recruited between December 30, 2019 and February 19, 2020. Logistic regression, Cox proportional-hazards model and marginal structural modeling (MSM) were applied to evaluate the associations between corticosteroid use and corresponding outcome variables. Out of the 294 critically ill patients affected by COVID-19, 183 (62.2%) received corticosteroids, with methylprednisolone as the most frequently administered corticosteroid (175 accounting for 96%). Of those treated with corticosteroids, 69.4% received corticosteroid prior to ICU admission. When adjustments and subgroup analysis were not performed, no significant associations between corticosteroids use and 90-day mortality or SARS-CoV-2 RNA clearance were found. However, when stratified analysis based on corticosteroid initiation time was performed, there was a significant correlation between corticosteroid use (≤ 3 day after ICU admission) and 90-day mortality (logistic regression adjusted for baseline: OR 4.49, 95% CI 1.17–17.25, p = 0.025; Cox adjusted for baseline and time varying variables: HR 3.89, 95% CI 1.94–7.82, p < 0.001; MSM adjusted for baseline and time-dependent variants: OR 2.32, 95% CI 1.16–4.65, p = 0.017). No association was found between corticosteroid use and SARS-CoV-2 RNA clearance even after stratification by initiation time of corticosteroids and adjustments for confounding factors (corticosteroids use ≤ 3 days initiation vs no corticosteroids use) using MSM were performed. Early initiation of corticosteroid use (≤ 3 days after ICU admission) was associated with an increased 90-day mortality. Early use of methylprednisolone in the ICU is therefore not recommended in patients with severe COVID-19.

33 citations

Journal ArticleDOI
TL;DR: Mortality of critically ill patients with COVID-19 was high and multi-organ failure induced by ARDS was the main death cause, high viral load were observed in non-survivors.
Abstract: Background: Since the end of 2019, coronavirus disease-2019 (COVID-19) outbreak spreads around the world We aimed to share the details of critically ill patien

5 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
01 Feb 2021-Allergy
TL;DR: In this review, the scientific evidence on the risk factors of severity of COVID‐19 are highlighted and socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an unprecedented global social and economic impact, and high numbers of deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung diseases, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type I interferon secretion capacity, and pregnancy. Possible complications include acute kidney injury, coagulation disorders, thoromboembolism. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1β, Krebs von den Lungen-6 (KL-6), and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of severity of COVID-19.

703 citations

Journal ArticleDOI
17 Nov 2020-PLOS ONE
TL;DR: In this article, a systematic review is conducted to identify prognostic factors that may be used in decision-making related to the care of patients infected with SARS-CoV-2.
Abstract: Background and purpose The objective of our systematic review is to identify prognostic factors that may be used in decision-making related to the care of patients infected with COVID-19. Data sources We conducted highly sensitive searches in PubMed/MEDLINE, the Cochrane Central Register of Controlled Trials (CENTRAL) and Embase. The searches covered the period from the inception date of each database until April 28, 2020. No study design, publication status or language restriction were applied. Study selection and data extraction We included studies that assessed patients with confirmed or suspected SARS-CoV-2 infectious disease and examined one or more prognostic factors for mortality or disease severity. Reviewers working in pairs independently screened studies for eligibility, extracted data and assessed the risk of bias. We performed meta-analyses and used GRADE to assess the certainty of the evidence for each prognostic factor and outcome. Results We included 207 studies and found high or moderate certainty that the following 49 variables provide valuable prognostic information on mortality and/or severe disease in patients with COVID-19 infectious disease: Demographic factors (age, male sex, smoking), patient history factors (comorbidities, cerebrovascular disease, chronic obstructive pulmonary disease, chronic kidney disease, cardiovascular disease, cardiac arrhythmia, arterial hypertension, diabetes, dementia, cancer and dyslipidemia), physical examination factors (respiratory failure, low blood pressure, hypoxemia, tachycardia, dyspnea, anorexia, tachypnea, haemoptysis, abdominal pain, fatigue, fever and myalgia or arthralgia), laboratory factors (high blood procalcitonin, myocardial injury markers, high blood White Blood Cell count (WBC), high blood lactate, low blood platelet count, plasma creatinine increase, high blood D-dimer, high blood lactate dehydrogenase (LDH), high blood C-reactive protein (CRP), decrease in lymphocyte count, high blood aspartate aminotransferase (AST), decrease in blood albumin, high blood interleukin-6 (IL-6), high blood neutrophil count, high blood B-type natriuretic peptide (BNP), high blood urea nitrogen (BUN), high blood creatine kinase (CK), high blood bilirubin and high erythrocyte sedimentation rate (ESR)), radiological factors (consolidative infiltrate and pleural effusion) and high SOFA score (sequential organ failure assessment score). Conclusion Identified prognostic factors can help clinicians and policy makers in tailoring management strategies for patients with COVID-19 infectious disease while researchers can utilise our findings to develop multivariable prognostic models that could eventually facilitate decision-making and improve patient important outcomes. Systematic review registration Prospero registration number: CRD42020178802. Protocol available at: https://www.medrxiv.org/content/10.1101/2020.04.08.20056598v1.

428 citations

Journal ArticleDOI
TL;DR: In this paper, the prevalence and associated factors of antibiotic prescribing in patients with SARS-CoV-2 infection were estimated in a randomized controlled trial with 30,623 patients.

403 citations

Journal ArticleDOI
TL;DR: Clinical and laboratory features of COVID-19-associated coagulopathy overlap somewhat with a hemophagocytic syndrome, antiphospholipid syndrome, and thrombotic microangiopathy, but the unique character of CAC is defined.
Abstract: Thrombotic complications and coagulopathy frequently occur in COVID-19. However, the characteristics of COVID-19-associated coagulopathy (CAC) are distinct from those seen with bacterial sepsis-induced coagulopathy (SIC) and disseminated intravascular coagulation (DIC), with CAC usually showing increased D-dimer and fibrinogen levels but initially minimal abnormalities in prothrombin time and platelet count. Venous thromboembolism and arterial thrombosis are more frequent in CAC compared to SIC/DIC. Clinical and laboratory features of CAC overlap somewhat with a hemophagocytic syndrome, antiphospholipid syndrome, and thrombotic microangiopathy. We summarize the key characteristics of representative coagulopathies, discussing similarities and differences so as to define the unique character of CAC.

350 citations