scispace - formally typeset
Search or ask a question
Author

Xingli Wang

Other affiliations: Xiamen University, Jilin University, Rice University  ...read more
Bio: Xingli Wang is an academic researcher from Technical University of Berlin. The author has contributed to research in topics: Catalysis & Materials science. The author has an hindex of 37, co-authored 86 publications receiving 6682 citations. Previous affiliations of Xingli Wang include Xiamen University & Jilin University.


Papers
More filters
Journal ArticleDOI
TL;DR: A one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconnected heterostructures of WS2/MoS2 via control of the growth temperature is reported.
Abstract: Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconnected heterostructures of WS2/MoS2 via control of the growth temperature. Vertically stacked bilayers with WS2 epitaxially grown on top of the MoS2 monolayer are formed with preferred stacking order at high temperature. A strong interlayer excitonic transition is observed due to the type II band alignment and to the clean interface of these bilayers. Vapour growth at low temperature, on the other hand, leads to lateral epitaxy of WS2 on MoS2 edges, creating seamless and atomically sharp in-plane heterostructures that generate strong localized photoluminescence enhancement and intrinsic p-n junctions. The fabrication of heterostructures from monolayers, using simple and scalable growth, paves the way for the creation of unprecedented two-dimensional materials with exciting properties.

1,919 citations

Journal ArticleDOI
08 Apr 2014-ACS Nano
TL;DR: This work demonstrates the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands, and shows n-type channel behavior with average mobility much higher than the 4-20 cm(2) V(-1) s-1 reported for vapor phase grown MoS2.
Abstract: Recently, two-dimensional layers of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, and WSe2, have attracted much attention for their potential applications in electronic and optoelectronic devices. The selenide analogues of MoS2 and WS2 have smaller band gaps and higher electron mobilities, making them more appropriate for practical devices. However, reports on scalable growth of high quality transition metal diselenide layers and studies of their properties have been limited. Here, we demonstrate the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands. The photoluminescence intensity and peak position indicates a direct band gap of 1.5 eV for the MoSe2 monolayers. A back-gated field effect transistor based on MoSe2 monolayer shows n-type channel behavior with average mobility of 50 cm2 V–1 s–1, a value much higher than the 4–20 cm2 V–1 s–1 reported for vapor phase grown MoS2.

678 citations

Journal ArticleDOI
TL;DR: The effect of the nature of 3d-metal within a series of M-N-C catalysts on electrocatalytic activi-ty/selectivity for ORR (H2O2 and H2O products) and H 2O2 reduction reaction (H1O2RR) is investigated.
Abstract: Nitrogen-doped carbon materials featuring atomically dispersed metal cations (M-N-C) are an emerging family of materials with potential applications for electrocatalysis. The electrocatalytic activity of M-N-C materials toward four-electron oxygen reduction reaction (ORR) to H2O is a mainstream line of research for replacing platinum-group-metal-based catalysts at the cathode of fuel cells. However, fundamental and practical aspects of their electrocatalytic activity toward two-electron ORR to H2O2, a future green "dream" process for chemical industry, remain poorly understood. Here we combined computational and experimental efforts to uncover the trends in electrochemical H2O2 production over a series of M-N-C materials (M = Mn, Fe, Co, Ni, and Cu) exclusively comprising atomically dispersed M-Nx sites from molecular first-principles to bench-scale electrolyzers operating at industrial current density. We investigated the effect of the nature of a 3d metal within a series of M-N-C catalysts on the electrocatalytic activity/selectivity for ORR (H2O2 and H2O products) and H2O2 reduction reaction (H2O2RR). Co-N-C catalyst was uncovered with outstanding H2O2 productivity considering its high ORR activity, highest H2O2 selectivity, and lowest H2O2RR activity. The activity-selectivity trend over M-N-C materials was further analyzed by density functional theory, providing molecular-scale understandings of experimental volcano trends for four- and two-electron ORR. The predicted binding energy of HO* intermediate over Co-N-C catalyst is located near the top of the volcano accounting for favorable two-electron ORR. The industrial H2O2 productivity over Co-N-C catalyst was demonstrated in a microflow cell, exhibiting an unprecedented production rate of more than 4 mol peroxide gcatalyst-1 h-1 at a current density of 50 mA cm-2.

404 citations

Journal ArticleDOI
TL;DR: Here it is realized and confirmed that a synthetic superlattice of monolayer molybdenum disulphide forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei.
Abstract: The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this ‘artificial atom’ concept via capillary-pressureinduced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such twodimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics.

360 citations

Journal ArticleDOI
TL;DR: Two metal nitrides, TiN porous layers and Fe2 N nanoparticles, are grown uniformly with the assistance of atomic layer deposition on vertically aligned graphene nanosheets and used as the cathode and anode for solid-state supercapacitors, respectively.
Abstract: Two metal nitrides, TiN porous layers and Fe2 N nanoparticles, are grown uniformly with the assistance of atomic layer deposition on vertically aligned graphene nanosheets and used as the cathode and anode for solid-state supercapacitors, respectively. Full cells are constructed and show good flexibility, high-rate capability, and 98% capacitance retention after 20,000 cycles.

347 citations


Cited by
More filters
Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Abstract: BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe 2 ), semiconductors (e.g., MoS 2 ), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable.

4,851 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal ArticleDOI
24 Nov 2015-ACS Nano
TL;DR: Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract: The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

2,036 citations

Journal ArticleDOI
TL;DR: This work reports the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain, which allows it to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Abstract: Molybdenum disulphide is a promising non-precious catalyst for hydrogen evolution because it contains active edge sites and an inert basal plane. Introducing sulphur vacancies and strain now leads to activation and optimization of the basal plane. As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs 1,2,3,4,5), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane1,6,7,8. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

1,938 citations