scispace - formally typeset
Search or ask a question
Author

Xingxing Wang

Other affiliations: Chinese Academy of Sciences
Bio: Xingxing Wang is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Convolutional neural network & Deep learning. The author has an hindex of 11, co-authored 12 publications receiving 3962 citations. Previous affiliations of Xingxing Wang include Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.

3,125 citations

Posted Content
TL;DR: This paper details the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation, and introduces various applications of convolutional neural networks in computer vision, speech and natural language processing.
Abstract: In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.

1,302 citations

Journal ArticleDOI
TL;DR: A comprehensive study of all steps in BoVW and different fusion methods is provided, and a simple yet effective representation is proposed, called hybrid supervector, by exploring the complementarity of different BoVW frameworks with improved dense trajectories.

689 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: The convolutional recurrent neural network (C-RNN) is proposed, which learns the spatial dependencies between image regions to enhance the discriminative power of image representation and achieves competitive performance on ILSVRC 2012, SUN 397, and MIT indoor.
Abstract: In existing convolutional neural networks (CNNs), both convolution and pooling are locally performed for image regions separately, no contextual dependencies between different image regions have been taken into consideration. Such dependencies represent useful spatial structure information in images. Whereas recurrent neural networks (RNNs) are designed for learning contextual dependencies among sequential data by using the recurrent (feedback) connections. In this work, we propose the convolutional recurrent neural network (C-RNN), which learns the spatial dependencies between image regions to enhance the discriminative power of image representation. The C-RNN is trained in an end-to-end manner from raw pixel images. CNN layers are firstly processed to generate middle level features. RNN layer is then learned to encode spatial dependencies. The C-RNN can learn better image representation, especially for images with obvious spatial contextual dependencies. Our method achieves competitive performance on ILSVRC 2012, SUN 397, and MIT indoor.

163 citations

Book ChapterDOI
05 Nov 2012
TL;DR: The results show the new encoding methods can significantly improve the recognition accuracy compared with classical VQ and among them, Fisher kernel encoding and sparse encoding have the best performance.
Abstract: Bag of visual words (BoVW) models have been widely and successfully used in video based action recognition. One key step in constructing BoVW representation is to encode feature with a codebook. Recently, a number of new encoding methods have been developed to improve the performance of BoVW based object recognition and scene classification, such as soft assignment encoding [1], sparse encoding [2], locality-constrained linear encoding [3] and Fisher kernel encoding [4]. However, their effects for action recognition are still unknown. The main objective of this paper is to evaluate and compare these new encoding methods in the context of video based action recognition. We also analyze and evaluate the combination of encoding methods with different pooling and normalization strategies. We carry out experiments on KTH dataset [5] and HMDB51 dataset [6]. The results show the new encoding methods can significantly improve the recognition accuracy compared with classical VQ. Among them, Fisher kernel encoding and sparse encoding have the best performance. By properly choosing pooling and normalization methods, we achieve the state-of-the-art performance on HMDB51.

147 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: The learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks.
Abstract: We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets, 2) A homogeneous architecture with small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets, and 3) Our learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute due to the fast inference of ConvNets. Finally, they are conceptually very simple and easy to train and use.

7,091 citations

Proceedings Article
08 Dec 2014
TL;DR: This work proposes a two-stream ConvNet architecture which incorporates spatial and temporal networks and demonstrates that a ConvNet trained on multi-frame dense optical flow is able to achieve very good performance in spite of limited training data.
Abstract: We investigate architectures of discriminatively trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge is to capture the complementary information on appearance from still frames and motion between frames. We also aim to generalise the best performing hand-crafted features within a data-driven learning framework. Our contribution is three-fold. First, we propose a two-stream ConvNet architecture which incorporates spatial and temporal networks. Second, we demonstrate that a ConvNet trained on multi-frame dense optical flow is able to achieve very good performance in spite of limited training data. Finally, we show that multitask learning, applied to two different action classification datasets, can be used to increase the amount of training data and improve the performance on both. Our architecture is trained and evaluated on the standard video actions benchmarks of UCF-101 and HMDB-51, where it is competitive with the state of the art. It also exceeds by a large margin previous attempts to use deep nets for video classification.

6,397 citations

Posted Content
TL;DR: In this article, the authors proposed a simple and effective approach for spatio-temporal feature learning using deep 3D convolutional networks (3D ConvNets) trained on a large scale supervised video dataset.
Abstract: We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets; 2) A homogeneous architecture with small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets; and 3) Our learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute due to the fast inference of ConvNets. Finally, they are conceptually very simple and easy to train and use.

3,786 citations

Journal ArticleDOI
TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.

3,125 citations