scispace - formally typeset
Search or ask a question
Author

Xingyue He

Bio: Xingyue He is an academic researcher from Takeda Pharmaceutical Company. The author has contributed to research in topics: SUMO protein & Induced pluripotent stem cell. The author has an hindex of 8, co-authored 13 publications receiving 2010 citations. Previous affiliations of Xingyue He include Stony Brook University & Chinese Academy of Sciences.

Papers
More filters
Journal Article
TL;DR: The miR-34 activation can recapitulate elements of p53 activity, including induction of cell-cycle arrest and promotion of apoptosis, and loss of miR34 can impair p53-mediated cell death as discussed by the authors.
Abstract: | Several recent studies have found a conserved microRNA (miRNA) family, the miR-34s, to be direct transcriptional targets of p53. miR-34 activation can recapitulate elements of p53 activity, including induction of cell-cycle arrest and promotion of apoptosis, and loss of miR-34 can impair p53-mediated cell death. These data reinforce the growing awareness that non-coding RNAs are key players in tumour development by placing miRNAs in a central role in a well-known tumour-suppressor network.

519 citations

Journal ArticleDOI
TL;DR: Data reinforce the growing awareness that non-coding RNAs are key players in tumour development by placing miRNAs in a central role in a well-known tumour-suppressor network.
Abstract: Several recent studies have found a conserved microRNA (miRNA) family, the miR-34s, to be direct transcriptional targets of p53. miR-34 activation can recapitulate elements of p53 activity, including induction of cell-cycle arrest and promotion of apoptosis, and loss of miR-34 can impair p53-mediated cell death. These data reinforce the growing awareness that non-coding RNAs are key players in tumour development by placing miRNAs in a central role in a well-known tumour-suppressor network.

454 citations

Journal ArticleDOI
TL;DR: These findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.
Abstract: Somatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency. So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation, indicating that additional p53 targets may regulate this process. Here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. Mir34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation of Mir34a promoted iPSC generation without compromising self-renewal or differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (also known as N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three miR-34 miRNAs acted cooperatively in this process. Taken together, our findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.

366 citations

Journal ArticleDOI
TL;DR: These findings, together with the fact that miR-34 is down-regulated in several types of human cancer, show that miRNAs can affect tumorigenesis by working within the confines of well-known tumor suppressor pathways.
Abstract: Several microRNAs (miRNAs) have been implicated in tumor development based on both changes in their expression patterns and gene structural alterations in human tumors. However, we are only now beginning to see how miRNAs interact with classic oncogene and tumor suppressor mechanisms. Several recent studies have implicated the miR-34 family of miRNAs in the p53 tumor suppressor network. The expression of miR-34a, miR-34b, and miR-34c is robustly induced by DNA damage and oncogenic stress in a p53-dependent manner. When overexpressed, miR-34 leads to apoptosis or cellular senescence, whereas reduction of miR-34 function attenuates p53-mediated cell death. These findings, together with the fact that miR-34 is down-regulated in several types of human cancer, show that miRNAs can affect tumorigenesis by working within the confines of well-known tumor suppressor pathways.

302 citations

Journal ArticleDOI
TL;DR: The results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.
Abstract: As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a represses HDM4, a potent negative regulator of p53, creating a positive feedback loop acting on p53. In a Kras-induced mouse lung cancer model, miR-34a deficiency alone does not exhibit a strong oncogenic effect. However, miR-34a deficiency strongly promotes tumorigenesis when p53 is haploinsufficient, suggesting that the defective p53-miR-34 feedback loop can enhance oncogenesis in a specific context. The importance of the p53/miR-34/HDM4 feedback loop is further confirmed by an inverse correlation between miR-34 and full-length HDM4 in human lung adenocarcinomas. In addition, human lung adenocarcinomas generate an elevated level of a short HDM4 isoform through alternative polyadenylation. This short HDM4 isoform lacks miR-34-binding sites in the 3' untranslated region (UTR), thereby evading miR-34 regulation to disable the p53-miR-34 positive feedback. Taken together, our results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances in the understanding of miRNAs in cancer and in other diseases are described and the challenge of identifying the most efficacious therapeutic candidates is discussed and a perspective on achieving safe and targeted delivery of miRNA therapeutics is provided.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that can modulate mRNA expression. Insights into the roles of miRNAs in development and disease have led to the development of new therapeutic approaches that are based on miRNA mimics or agents that inhibit their functions (antimiRs), and the first such approaches have entered the clinic. This Review discusses the role of different miRNAs in cancer and other diseases, and provides an overview of current miRNA therapeutics in the clinic. In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.

3,210 citations

Journal ArticleDOI
TL;DR: This Review summarizes the current knowledge of how these intriguing molecules are generated in animal cells.
Abstract: Small RNAs of 20-30 nucleotides can target both chromatin and transcripts, and thereby keep both the genome and the transcriptome under extensive surveillance. Recent progress in high-throughput sequencing has uncovered an astounding landscape of small RNAs in eukaryotic cells. Various small RNAs of distinctive characteristics have been found and can be classified into three classes based on their biogenesis mechanism and the type of Argonaute protein that they are associated with: microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs) and Piwi-interacting RNAs (piRNAs). This Review summarizes our current knowledge of how these intriguing molecules are generated in animal cells.

3,081 citations

Journal ArticleDOI
TL;DR: The EMT-associated reprogramming of cells not only suggests that fundamental changes may occur to several regulatory networks but also that an intimate interplay exists between them.
Abstract: Epithelial to mesenchymal transition (EMT) is essential for driving plasticity during development, but is an unintentional behaviour of cells during cancer progression. The EMT-associated reprogramming of cells not only suggests that fundamental changes may occur to several regulatory networks but also that an intimate interplay exists between them. Disturbance of a controlled epithelial balance is triggered by altering several layers of regulation, including the transcriptional and translational machinery, expression of non-coding RNAs, alternative splicing and protein stability.

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies are discussed.
Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that typically inhibit the translation and stability of messenger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell-cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell, and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of miRNA genomics, biogenesis, and function, we discuss the effects of miRNA dysregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.

1,899 citations

Journal ArticleDOI
12 Jun 2009-Cell
TL;DR: It is demonstrated that hepatocellular carcinoma (HCC) cells exhibit reduced expression of miR-26a, a miRNA that is normally expressed at high levels in diverse tissues that may provide a general strategy for miRNA replacement therapies.

1,689 citations