scispace - formally typeset
Search or ask a question
Author

Xinjian Feng

Bio: Xinjian Feng is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Nanowire & Materials science. The author has an hindex of 26, co-authored 38 publications receiving 8872 citations. Previous affiliations of Xinjian Feng include Soochow University (Suzhou) & Northern Illinois University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work reports [101̅0] oriented ZnO nanowire (NW) arrays with a multichannel mesostructure that has a preferential growth of low energy crystal plane and exhibits 2-3 orders of magnitude faster electron transport rate than that in nanoparticle (NP) films.
Abstract: Crystallographic orientation and microstructure of metal oxide nanomaterials have great impact on their properties and applications. Here, we report [1010] oriented ZnO nanowire (NW) arrays with a multichannel mesostructure. The NW has a preferential growth of low energy (1010) crystal plane and exhibits 2–3 orders of magnitude faster electron transport rate than that in nanoparticle (NP) films. Furthermore, the surface area of the as-prepared NW arrays is about 5 times larger than that of conventional NW arrays with similar thickness. These lead to the highest power conversion efficiency of ZnO NW array-based sensitized solar cells. We anticipate that the unique crystallographic orientation and mesostructure will endow ZnO NW arrays new properties and expand their application fields.

30 citations

Journal ArticleDOI
TL;DR: Rhodium nanoparticle and mesoporous silicon nanowire hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity and has great potential for future practical application in various oxidase-base biosensors.
Abstract: Developing nanostructured electrocatalysts, with low overpotential, high selectivity and activity has fundamental and technical importance in many fields. We report here rhodium nanoparticle and mesoporous silicon nanowire (RhNP@mSiNW) hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity. By employing electrodes that loaded with RhNP@mSiNW nanohybrids, interference caused from both many electroactive substances and dissolved oxygen were eliminated by electrochemical assaying at an optimal potential of +75 mV. Furthermore, the electrodes exhibited a high detection sensitivity of 0.53 μA/mM and fast response (< 5 s). This high-performance nanohybrid electrocatalyst has great potential for future practical application in various oxidase-base biosensors.

18 citations

Journal ArticleDOI
29 Feb 2008-Langmuir
TL;DR: A superhydrophilic ZnO nanorod film is applied to the originally hydrophobic surface of a resonance-based magnetoelastic sensor, which results in the liquid completely spreading across the surface, removing unwanted air bubbles from the liquid/sensor interface.
Abstract: Air bubbles are known to form at the liquid/solid interface of hydrophobic materials upon immersion in a liquid (Holmberg, M.; Kduhle, A.; Garnaes, J.; Morch, K. A.; Boisen, A. Langmuir 2003, 19, 10510-10513). In the case of gravimetric sensors, air bubbles that randomly form at the liquid-solid interface result in poor sensor-to-sensor reproducibility. Herein a superhydrophilic ZnO nanorod film is applied to the originally hydrophobic surface of a resonance-based magnetoelastic sensor. The superhydrophilic coating results in the liquid completely spreading across the surface, removing unwanted air bubbles from the liquid/sensor interface. The resonance amplitude of uncoated (bare) and ZnO-modified sensors are measured in air and then when immersed in saline solution, ethylene glycol, or bovine blood. In comparison to the bare, hydrophobic sensors, we find that the standard deviation of the resonance amplitudes of the liquid-immersed ZnO-nanorod-modified sensors decreases substantially, ranging from a 27% decrease for bovine blood to a 67% decrease for saline. The strategy of using a superhydrophilic coating can be applied to other systems having similar interfacial problems.

17 citations

Journal ArticleDOI
TL;DR: The results reveal that the control of electrode surface wettability is of significant importance for the regulation of the electrode-electrolyte local interface environment, which provides a new set of guidelines and perspective for future electrode preparation and application.
Abstract: Described herein is the first study of metal oxide deposition on an electrode with a solid/liquid/gas triphase reaction interface. Such an electrode enables the formation of a locally high interface pH value that is independent of the bulk conditions, and allows the deposition of a wide variety of metal oxides in a robust electrolyte. The results reveal that the control of electrode surface wettability is of significant importance for the regulation of the electrode-electrolyte local interface environment, which provides a new set of guidelines and perspective for future electrode preparation and application.

17 citations

Journal ArticleDOI
TL;DR: In this article, the use of self-assembled, vertically oriented one-dimensional (1D) titania nanowire and nanotube geometries in several third-generation excitonic solar cell designs including those based upon bulk heterojunction, ordered heterjunction, Forster resonance energy transfer (FRET), and liquid-junction dye-sensitized solar cells (DSSCs).
Abstract: We review the use of self-assembled, vertically oriented one-dimensional (1D) titania nanowire and nanotube geometries in several third-generation excitonic solar cell designs including those based upon bulk heterojunction, ordered heterojunction, Forster resonance energy transfer (FRET), and liquid-junction dye-sensitized solar cells (DSSCs).

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Abstract: Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2

8,037 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, has been summarized.
Abstract: TiO 2 photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO 2 photocatalysis. In this review, recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, have been summarized. The dimensionality associated with the structure of a TiO 2 material can affect its properties and functions, including its photocatalytic performance, and also more specifically its surface area, adsorption, reflectance, adhesion, and carrier transportation properties. We provide a brief introduction to the current situation in TiO 2 photocatalysis, and describe structurally controlled TiO 2 photocatalysts which can be classified into zero-, one-, two-, and three-dimensional structures. Furthermore, novel applications of TiO 2 surfaces for the fabrication of wettability patterns and for printing are discussed.

2,733 citations

Journal ArticleDOI
TL;DR: The first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO(2) nanowires for photoelectrochemical (PEC) water splitting and opening up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis.
Abstract: We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO2 nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO2 (H:TiO2) nanowires were prepared by annealing the pristine TiO2 nanowires in hydrogen atmosphere at various temperatures in a range of 200–550 °C. In comparison to pristine TiO2 nanowires, H:TiO2 samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO2 samples have exceptionally low photocurrent saturation potentials of −0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO2 nanowire sample yields a photocurrent density of ∼1.97 mA/cm2 at −0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm2 from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ∼1...

2,306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Abstract: Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

2,273 citations