scispace - formally typeset
Search or ask a question
Author

Xinqian Yu

Bio: Xinqian Yu is an academic researcher from Nanjing Medical University. The author has contributed to research in topics: Tumor microenvironment & Breast cancer. The author has an hindex of 2, co-authored 6 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
Jie Mei1, Yan Liu1, Xinqian Yu1, Leiyu Hao1, Tao Ma1, Qiang Zhan1, Yan Zhang1, Yichao Zhu1 
TL;DR: In this article, the expression levels of DAAM and YWHAZ were examined by immunohistochemistry (IHC) staining in breast cancer (BrCa) tissues.
Abstract: Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a critical driver in facilitating metastasis in breast cancer (BrCa). However, molecular mechanisms for the regulation of DAAM1 activation are only partially elucidated. In this research, the expression levels of YWHAZ and DAAM1 were examined by immunohistochemistry (IHC) staining in BrCa tissues. The functional roles of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ)-DAAM1 axis and their regulator microRNA-613 (miR-613) in BrCa cells and associated molecular mechanisms were demonstrated in vitro. As results, the expression levels of DAAM1 and YWHAZ were significantly upregulated in BrCa tissues compared with normal tissues and remarkably associated with poor prognosis. Besides, DAAM1 and YWHAZ were positively correlated with each other in BrCa tissues. YWHAZ interacted and colocalized with DAAM1 in BrCa cells, which was essential for DAAM1-mediated microfilament remodeling and RhoA activation. Moreover, miR-613 directly targeted both YWHAZ and DAAM1, contributing to inhibiting BrCa cells migration via blocking the complex of YWHAZ-DAAM1. To sum up, these data reveal that YWHAZ regulates DAAM1 activation, and the YWHAZ-DAAM1 complex is directly targeted by the shared post-transcriptional regulator miR-613.

19 citations

Journal ArticleDOI
Leiyu Hao1, Yan Liu1, Xinqian Yu1, Yuerong Zhu, Yichao Zhu1 
TL;DR: Wang et al. as discussed by the authors found that dishevelled-associated activator of morphogenesis 1 (Daam1) regulates invadopodia extension and BrCa cell motility.
Abstract: Objectives Cancer cell migration to secondary organs remains an essential cause of death among breast cancer (BrCa) patients. Cell motility mainly relies on actin dynamics. Our previous reports verified that dishevelled-associated activator of morphogenesis 1 (Daam1) regulates invadopodia extension and BrCa cell motility. However, how Daam1 is involved in actin filament assembly and promotes pseudopodia formation in BrCa cells remains unclear. Materials and methods One hundred human BrCa samples were collected at Women's Hospital of Nanjing Medical University. Immunohistochemistry (IHC) was used to examine Daam1 and Fascin expression. Wound healing and Boyden chamber assays were used to explore cell migration and pseudopodia extension of BrCa cells. Co-IP/pull down and Western blotting were performed to study the physical interaction between Daam1 and Fascin. Immunofluorescence assays were performed to observe whether Daam1 and Fascin were colocalized and mediated actin filament assembly. Results Fascin was upregulated in BrCa tissues compared with that in paracarcinoma tissues. The downregulation of Fascin caused a decline in pseudopodia formation and cell motility. Moreover, we found that Daam1 interacted with Fascin via formin homology (FH) domains, especially the FH2 domain. Immunofluorescence assays showed that Daam1 and Fascin partially colocalized to actin filaments, and the knockdown of Daam1 or Fascin failed to colocalize to short and curved actin filaments. Conclusions Daam1 specifically binds to Fascin via FH domains and cooperatively facilitates pseudopodia formation and cell migration by promoting actin filament assembly in BrCa.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the miR-10b-5p was found highly expressed in tissue and serum samples of patients with advanced stages (stage III+IV) than that in early stage patients (stage I+II).
Abstract: Tumor microenvironment interacts with gastric cancer (GC) cells and affects tumor development. The communication between GC cells and fibroblasts has not been clearly studied and understood. MiR-10b-5p was found highly expressed in tissue and serum samples of patients with advanced stages (stage III+IV) than that in early stage patients (stage I+II). The expression determination of serum exosomal microRNA was also shown with high expression of miR-10b-5p in GC patients with advanced stages. Dual-luciferase activity assays indicated that miR-10b-5p targeted PTEN in GC cells and KLF11 in fibroblasts. The silence of miR-10b-5p up-regulated the expression of PTEN and repressed PI3K/Akt/mTORC1 signaling in GC cells. Clonogenic assay and MTT assay demonstrated that miR-10b-5p inhibitor could significantly reduce the colony formation and cell viability of GC cells. And the incubation of exosomal miR-10b-5p could increase the proliferation of GC cells. Immunohistochemistry staining revealed that high expression of α-SMA was detected in GC tissues with advanced stages. The overexpression of miR-10b-5p down-regulated KLF11 expression and elevated TGFβR1 expression in fibroblasts. In addition, miR-10b-5p inhibitor blocked the secretion of TGFβ1 in GC cells and the directional migration of fibroblasts. Therefore, up-regulated exosomal miR-10b-5p is involved in the interaction of GC cells and fibroblasts in tumor microenvironment via participating in the regulation of TGFβ signaling pathway.

11 citations

Journal ArticleDOI
Leiyu Hao1, Fengru Huang1, Xinqian Yu1, Bujie Xu1, Yan Liu1, Yan Zhang1, Yichao Zhu1 
TL;DR: In this paper, the exact expression patterns and prognostic values of early growth response family members (EGRs), EGR1-4, remain largely unknown, and the role of EGRs in the progress of breast cancer (BRCA) remains largely unknown.
Abstract: Early growth response family members (EGRs), EGR1-4, have increasingly attracted attention in multiple cancers. However, the exact expression patterns and prognostic values of EGRs in the progress of breast cancer (BRCA) remain largely unknown. The mRNA expression and prognostic characteristics of EGRs were examined by the Cancer Genome Atlas (TCGA), Oncomine, and Kaplan-Meier plotter. Enrichment analyses were conducted based on protein-protein interaction (PPI) network. The Tumor Immune Estimation Resource (TIMER) database and MethSurv were further explored. The protein expression of EGR1 in BRCA was measured by western blotting and immunohistochemistry. The migration of mammary epithelial cells was determined by Boyden chamber assay. The transcriptional levels of EGR1/2/3 displayed significantly low expression in BRCA compared with that in normal tissues, while EGR4 was shown adverse expression pattern. Survival analysis revealed upregulated EGR1-4 were remarkably associated with favorable relapse-free survival (RFS). A close correlation with specific tumor-infiltrating immune cells (TIICs) and several CpG sites of EGRs were exhibited. Immunohistochemistry assays showed that the protein expression of EGR1 was remarkably downregulated in BRCA compared with that in paracancerous tissues. The migration of MCF10A mammary epithelial cells was increased after the silence of EGR1 by siRNA transfection. This study provides a novel insight to the role of EGRs in the prognostic value of BRCA.

2 citations

Posted ContentDOI
10 May 2021-bioRxiv
TL;DR: In this article, a systematic pan-cancer analysis was conducted to assess the expression pattern and immunological role of ACE2 based on RNA-sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA).
Abstract: Angiotensin-converting enzyme 2 (ACE2) is known as a host cell receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is identified to be dysregulated in multiple tumors. Although the characterization of abnormal ACE2 expression in malignancies has been preliminarily explored, in-depth analysis of ACE2 in breast cancer (BRCA) has not been elucidated. A systematic pan-cancer analysis was conducted to assess the expression pattern and immunological role of ACE2 based on RNA-sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA). Next, correlations between ACE2 expression immunological characteristics in the BRCA tumor microenvironment (TME) were evaluated. Also, the role of ACE2 in predicting the clinical features and the response to therapeutic options in BRCA was estimated. These findings were subsequently validated in another public transcriptomic cohort as well as a recruited cohort. ACE2 was lowly expressed in most cancers compared with adjacent tissues. ACE2 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, immune checkpoints, and tumor mutation burden (TMB). Besides, high ACE2 levels indicated the triple-negative breast cancer (TNBC) subtype of BRCA, lower response to endocrine therapy and higher response to chemotherapy, anti-ERBB therapy, antiangiogenic therapy and immunotherapy. To sum up, ACE2 correlates with an inflamed TME and identifies immuno-hot tumors, which may be used as an auxiliary biomarker for the identification of immunological characteristics in BRCA.

1 citations


Cited by
More filters
Journal ArticleDOI
Jie Mei1, Yan Liu1, Xinqian Yu1, Leiyu Hao1, Tao Ma1, Qiang Zhan1, Yan Zhang1, Yichao Zhu1 
TL;DR: In this article, the expression levels of DAAM and YWHAZ were examined by immunohistochemistry (IHC) staining in breast cancer (BrCa) tissues.
Abstract: Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a critical driver in facilitating metastasis in breast cancer (BrCa). However, molecular mechanisms for the regulation of DAAM1 activation are only partially elucidated. In this research, the expression levels of YWHAZ and DAAM1 were examined by immunohistochemistry (IHC) staining in BrCa tissues. The functional roles of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ)-DAAM1 axis and their regulator microRNA-613 (miR-613) in BrCa cells and associated molecular mechanisms were demonstrated in vitro. As results, the expression levels of DAAM1 and YWHAZ were significantly upregulated in BrCa tissues compared with normal tissues and remarkably associated with poor prognosis. Besides, DAAM1 and YWHAZ were positively correlated with each other in BrCa tissues. YWHAZ interacted and colocalized with DAAM1 in BrCa cells, which was essential for DAAM1-mediated microfilament remodeling and RhoA activation. Moreover, miR-613 directly targeted both YWHAZ and DAAM1, contributing to inhibiting BrCa cells migration via blocking the complex of YWHAZ-DAAM1. To sum up, these data reveal that YWHAZ regulates DAAM1 activation, and the YWHAZ-DAAM1 complex is directly targeted by the shared post-transcriptional regulator miR-613.

19 citations

Journal ArticleDOI
TL;DR: The significance of cholesterol synthesis in NSCLC is revealed and the improved therapeutic efficacy of ICB in combination with statin is demonstrated, which could provide a innovative clinical insight to treatNSCLC patients with immuno-cold tumors.
Abstract: Immune checkpoint blockade (ICB) therapy has achieved breakthroughs in the treatment of advanced non–small cell lung cancer (NSCLC). Nevertheless, the low response due to immuno-cold (i.e., tumors with limited tumor-infiltrating lymphocytes) tumor microenvironment (TME) largely limits the application of ICB therapy. Based on the glycolytic/cholesterol synthesis axis, a stratification framework for EGFR-WT NSCLC was developed to summarize the metabolic features of immuno-cold and immuno-hot tumors. The cholesterol subgroup displays the worst prognosis in immuno-cold NSCLC, with significant enrichment of the cholesterol gene signature, indicating that targeting cholesterol synthesis is essential for the therapy for immuno-cold NSCLC. Statin, the inhibitor for cholesterol synthesis, can suppress the aggressiveness of NSCLC in vitro and in vivo and can also drastically reverse the phenotype of immuno-cold to an inflamed phenotype in vivo. This change led to a higher response to ICB therapy. Moreover, both our in-house data and meta-analysis further support that statin can significantly enhance ICB efficacy. In terms of preliminary mechanisms, statin could transcriptionally inhibit PD-L1 expression and induce ferroptosis in NSCLC cells. Overall, we reveal the significance of cholesterol synthesis in NSCLC and demonstrate the improved therapeutic efficacy of ICB in combination with statin. These findings could provide a clinical insight to treat NSCLC patients with immuno-cold tumors.

13 citations

Journal ArticleDOI
27 Sep 2021-Cells
TL;DR: In this paper, a review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated.
Abstract: Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.

10 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the molecular mechanisms underlying the suppressive effect of Incaspitolide A (compound TMJ-12) specifically on BPH-1 cells.
Abstract: Benign prostatic hyperplasia (BPH) is a common disease that occurs mainly in older men. The pathogenesis of BPH is complex and patients face a prolonged treatment course, and novel drugs with better selectivity and lower toxicity are required. Incaspitolide A (compound TMJ-12) is a germacrane-type sesquiterpenoid compound extracted from the plant Carpesium carnuum. Extracts of C. carnuum are known to exert suppressive effects on BPH-1 cells. In the present study, we investigated the molecular mechanisms underlying the suppressive effect of TMJ-12 specifically on BPH-1 cells. A cytotoxicity assay indicated that TMJ-12 inhibited BPH-1 cell proliferation, while flow cytometry assays showed that TMJ-12 induced G2/M phase cell cycle arrest and the apoptosis of BPH-1 cells. TMJ-12 was also shown to regulate the expression of several apoptosis- and cell cycle-related proteins, namely Bcl-2, Bax, Bad, Caspase-9, Caspase-3, cyclin-dependent kinase 1 (CDK1), Cyclin B1, CDC25C, and c-Myc, among others. Collapse of the mitochondrial membrane potential (ΔΨm) following exposure to TMJ-12 was detected with the JC-1 staining assay. Further investigation revealed that treatment with TMJ-12 inhibited the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway by increasing the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Taken together, the results suggest that TMJ-12 prevents BPH-1 cell proliferation via the PI3K/AKT pathway by inducing apoptosis and cell cycle arrest.

8 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic multi-omics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC) was performed using various publicly available tools.
Abstract: EGR1 (early growth response 1) is dysregulated in many cancers and exhibits both tumor suppressor and promoter activities, making it an appealing target for cancer therapy. Here, we used a systematic multi-omics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC). EGR1 expression, its promoter methylation, and protein expression pattern were assessed using various publicly available tools. COSMIC-based somatic mutations and cBioPortal-based copy number alterations were analyzed, and the prognostic roles of EGR1 in BC were determined using Prognoscan and Kaplan-Meier Plotter. We also used bc-GenEx- Miner to investigate the EGR1 co-expression profile. EGR1 was more often downregulated in BC tissues than in normal breast tissue, and its knockdown was positively correlated with poor survival. Low EGR1 expression levels were also associated with increased risk of ER+, PR+, and HER2- BCs. High positive correlations were observed among EGR1, DUSP1, FOS, FOSB, CYR61, and JUN mRNA expression in BC tissue. This systematic review suggested that EGR1 expression may serve as a prognostic marker for BC patients and that clinicopathological parameters influence its prognostic utility. In addition to EGR1, DUSP1, FOS, FOSB, CYR61, and JUN can jointly be considered prognostic indicators for BC. [BMB Reports 2021; 54(10): 497-504].

8 citations