scispace - formally typeset
Search or ask a question
Author

Xinyan Deng

Bio: Xinyan Deng is an academic researcher from Purdue University. The author has contributed to research in topics: Flapping & Wing. The author has an hindex of 27, co-authored 94 publications receiving 2930 citations. Previous affiliations of Xinyan Deng include University of Delaware & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: The system dynamic models which include several elements that are substantially different from those present in fixed or rotary wing MAVs, namely micromechanical flying insects (MFIs), are described.
Abstract: This paper presents the mathematical modeling of flapping flight inch-size micro aerial vehicles (MAVs), namely micromechanical flying insects (MFIs). The target robotic insects are electromechanical devices propelled by a pair of independent flapping wings to achieve sustained autonomous flight, thereby mimicking real insects. In this paper, we describe the system dynamic models which include several elements that are substantially different from those present in fixed or rotary wing MAVs. These models include the wing-thorax dynamics, the flapping flight aerodynamics at a low Reynolds number regime, the body dynamics, and the biomimetic sensory system consisting of ocelli, halteres, magnetic compass, and optical flow sensors. The mathematical models are developed based on biological principles, analytical models, and experimental data. They are presented in the Virtual Insect Flight Simulator (VIFS) and are integrated together to give a realistic simulation for MFI and insect flight. VIFS is a software tool intended for modeling flapping flight mechanisms and for testing and evaluating the performance of different flight control algorithms

352 citations

Journal ArticleDOI
TL;DR: This paper provides a methodology to approximate the time-varying dynamics caused by the aerodynamic forces with a time-invariant model using averaging theory and a biomimetic parametrization of the wing trajectories.
Abstract: In this paper, we present the design of the flight control algorithms for flapping wing micromechanical flying insects (MFIs). Inspired by the sensory feedback and neuromotor structure of insects, we propose a similar top-down hierarchical architecture to achieve high performance despite the MFIs' limited on-board computational resources. The flight stabilization problem is formulated as high-frequency periodic control of an underactuated system. In particular, we provide a methodology to approximate the time-varying dynamics caused by the aerodynamic forces with a time-invariant model using averaging theory and a biomimetic parametrization of the wing trajectories. This approximation leads to a simpler dynamical model that can be identified using experimental data from the on-board sensors and the voltage inputs to the wing actuators. The overall control law is a periodic proportional output feedback. Simulations, including sensor and actuator models, demonstrate stable flight in hovering mode

292 citations

Journal ArticleDOI
10 Apr 2009-Science
TL;DR: The FCT model predicts that isometrically scaled animals experience similar damping on a per-wingbeat time scale, resulting in similar turning dynamics in wingbeat time regardless of body size.
Abstract: Flying animals exhibit remarkable capabilities for both generating maneuvers and stabilizing their course and orientation after perturbation. Here we show that flapping fliers ranging in size from fruit flies to large birds benefit from substantial damping of angular velocity through a passive mechanism termed flapping counter-torque (FCT). Our FCT model predicts that isometrically scaled animals experience similar damping on a per-wingbeat time scale, resulting in similar turning dynamics in wingbeat time regardless of body size. The model also shows how animals may simultaneously specialize in both maneuverability and stability (at the cost of efficiency) and provides a framework for linking morphology, wing kinematics, maneuverability, and flight dynamics across a wide range of flying animals spanning insects, bats, and birds.

277 citations

Journal ArticleDOI
TL;DR: It is shown that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing, which can be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings.
Abstract: Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings.

251 citations

Journal ArticleDOI
Bo Cheng1, Xinyan Deng1
TL;DR: The analytical model that is developed is important to study the flight dynamics and passive stability of flying animals, as well as to develop flapping-wing micro air vehicles (MAVs) with stable and maneuverable flight, which is achieved through passive dynamic stability and active flight control.
Abstract: Body movements of flying insects change their effective wing kinematics and, therefore, influence aerodynamic force and torque production. It was found that substantial aerodynamic damping is produced by flapping wings through a passive mechanism termed “flapping countertorque” during fast yaw turns. We expand this study to include the aerodynamic damping that is produced by flapping wings during body translations and rotations with respect to all its six principal axes-roll, pitch, yaw, forward/backward, sideways, and heave. Analytical models were derived by the use of a quasi-steady aerodynamic model and blade-element analysis by the incorporation of the effective changes of wing kinematics that are caused by body motion. We found that aerodynamic damping, in all these cases, is linearly dependent on the body translational and angular velocities and increases with wing-stroke amplitude and frequency. Based on these analytical models, we calculated the stability derivatives that are associated with the linearized flight dynamics at hover and derived a complete 6-degree-of-freedom (6-DOF) dynamic model. The model was then used to estimate the flight dynamics and stability of four different species of flying insects as case studies. The analytical model that is developed in this paper is important to study the flight dynamics and passive stability of flying animals, as well as to develop flapping-wing micro air vehicles (MAVs) with stable and maneuverable flight, which is achieved through passive dynamic stability and active flight control.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss the capabilities of soft robots, describe examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.
Abstract: Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

1,295 citations

Journal ArticleDOI
03 May 2013-Science
TL;DR: An 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies is built and demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers, which validates a sufficient suite of innovations for achieving artificial, insects-like flight.
Abstract: Flies are among the most agile flying creatures on Earth To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers The result validates a sufficient suite of innovations for achieving artificial, insect-like flight

929 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent progress in flapping wing aerodynamics and aeroelasticity is presented, where it is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation.

877 citations

Proceedings ArticleDOI
07 Jun 2004
TL;DR: The approach that the lab has taken to micro VTOL evolving towards full autonomy is described, and the mechanical design, dynamic modelling, sensing, and control of the indoor VTOL autonomous robot OS4 are presented.
Abstract: Progresses in sensor technology, data processing and integrated actuators has made the development of miniature flying robots fully possible. Micro VTOL systems represent a useful class of flying robots because of their strong capabilities for small-area monitoring and building exploration. In this paper we describe the approach that our lab has taken to micro VTOL evolving towards full autonomy, and present the mechanical design, dynamic modelling, sensing, and control of our indoor VTOL autonomous robot OS4.

831 citations