scispace - formally typeset
Search or ask a question
Author

Xinyu Zhang

Bio: Xinyu Zhang is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Wireless network & Wireless. The author has an hindex of 38, co-authored 140 publications receiving 4681 citations. Previous affiliations of Xinyu Zhang include Wisconsin Alumni Research Foundation & University of Toronto.


Papers
More filters
Proceedings ArticleDOI
07 Sep 2015
TL;DR: Experimental results demonstrate that mTrack can locate/track a pen with 90-percentile error below 8 mm, enabling new applications such as wireless transcription and virtual trackpad, and evaluating its performance on a 60 GHz reconfigurable radio platform.
Abstract: Radio-based passive-object sensing can enable a new form of pervasive user-computer interface. Prior work has employed various wireless signal features to sense objects under a set of predefined, coarse motion patterns. But an operational UI, like a trackpad, often needs to identify fine-grained, arbitrary motion. This paper explores the feasibility of tracking a passive writing object (e.g., pen) at sub-centimeter precision. We approach this goal through a practical design, mTrack, which uses highly-directional 60 GHz millimeter-wave radios as key enabling technology. mTrack runs a discrete beam scanning mechanism to pinpoint the object's initial location, and tracks its trajectory using a signal-phase based model. In addition, mTrack incorporates novel mechanisms to suppress interference from background reflections, taking advantage of the short wavelength of 60 GHz signals. We prototype mTrack and evaluate its performance on a 60 GHz reconfigurable radio platform. Experimental results demonstrate that mTrack can locate/track a pen with 90-percentile error below 8 mm, enabling new applications such as wireless transcription and virtual trackpad.

246 citations

Proceedings ArticleDOI
15 Jun 2015
TL;DR: An in-depth measurement of indoor 60 GHz networks using a first-of-its-kind software-radio platform is conducted, dispels some common myths, and reveals key challenges in maintaining robust flexible-beam connection.
Abstract: 60 GHz technology holds tremendous potential to upgrade wireless link throughput to Gbps level. To overcome inherent vulnerability to attenuation, 60 GHz radios communicate by forming highly-directional electronically-steerable beams. Standards like IEEE 802.11ad have tailored MAC/PHY protocols to such flexible-beam 60 GHz networks. However, lack of a reconfigurable platform has thwarted a realistic proof-of-concept evaluation. In this paper, we conduct an in-depth measurement of indoor 60 GHz networks using a first-of-its-kind software-radio platform. Our measurement focuses on the link-level behavior with three major perspectives: (i) coverage and bit-rate of a single link, and implications for 60 GHz MIMO; (ii) impact of beam-steering on network performance, particularly under human blockage and device mobility; (iii) spatial reuse between flexible beams. Our study dispels some common myths, and reveals key challenges in maintaining robust flexible-beam connection. We propose new principles that can tackle such challenges based on unique properties of 60 GHz channel and cognitive capability of 60 GHz links.

199 citations

Proceedings ArticleDOI
08 Jul 2014
TL;DR: It is revealed that inter-link interference and spatial reuse substantially reduces full-duplex gain, rendering it well below 2 in common cases, while the asymptotic gain approaches 1 when interference range approaches transmission range.
Abstract: Full-duplex has emerged as a new communication paradigm and is anticipated to double wireless capacity. Existing studies of full-duplex mainly focused on its PHY layer design, which enables bidirectional transmission between a single pair of nodes. In this paper, we establish an analytical framework to quantify the network-level capacity gain of full-duplex over halfduplex. Our analysis reveals that inter-link interference and spatial reuse substantially reduces full-duplex gain, rendering it well below 2 in common cases. More remarkably, the asymptotic gain approaches 1 when interference range approaches transmission range. Through a comparison between optimal halfand fullduplex MAC algorithms, we find that full-duplex’s gain is further reduced when it is applied to CSMA based wireless networks. Our analysis provides important guidelines for designing full-duplex networks. In particular, network-level mechanisms such as spatial reuse and asynchronous contention must be carefully addressed in full-duplex based protocols, in order to translate full-duplex’s PHY layer capacity gain into network throughput improvement.

175 citations

Proceedings ArticleDOI
17 May 2011
TL;DR: An analytical framework is established that relates its key design parameters to performance and cost and demonstrates CBT's significant throughput improvement over the legacy ZigBee protocol, with negligible performance loss to WiFi.
Abstract: The ISM spectrum is becoming increasingly populated by emerging wireless networks. Spectrum sharing among the same network of devices can be arbitrated by MAC protocols (e.g., CSMA), but the coexistence between heterogeneous networks remains a challenge. The disparate power levels, asynchronous time slots, and incompatible PHY layers of heterogeneous networks severely degrade the effectiveness of traditional MAC. In this paper, we propose a new mechanism, called the Cooperative Busy Tone (CBT), that enables the reliable coexistence between two such networks, ZigBee and WiFi. CBT allows a separate ZigBee node to schedule a busy tone concurrently with the desired transmission, thereby improving the visibility of ZigBee devices to WiFi. Its core components include a frequency flip scheme that prevents the mutual interference between cooperative ZigBee nodes, and a busy tone scheduler that minimizes the interference to WiFi, for both CSMA and TDMA packets. To optimize CBT, we establish an analytical framework that relates its key design parameters to performance and cost. Both the analytical and detailed simulation results demonstrate CBT's significant throughput improvement over the legacy ZigBee protocol, with negligible performance loss to WiFi. The results are validated further by implementing CBT on sensor motes and software radios.

166 citations

Journal ArticleDOI
TL;DR: E-MiLi employs an opportunistic downclocking mechanism to optimize the efficiency of switching clock rate, based on a simple interface to existing MAC-layer scheduling protocols, and can detect packets with close to 100 percent accuracy on the USRP software radio platform.
Abstract: WiFi interface is known to be a primary energy consumer in mobile devices, and idle listening (IL) is the dominant source of energy consumption in WiFi. Most existing protocols, such as the 802.11 power-saving mode (PSM), attempt to reduce the time spent in IL by sleep scheduling. However, through an extensive analysis of real-world traffic, we found more than 60 percent of energy is consumed in IL, even with PSM enabled. To remedy this problem, we propose Energy-Minimizing idle Listening (E-MiLi) that reduces the power consumption in IL, given that the time spent in IL has already been optimized by sleep scheduling. Observing that radio power consumption decreases proportionally to its clock rate, E-MiLi adaptively downclocks the radio during IL, and reverts to full clock rate when an incoming packet is detected or a packet has to be transmitted. E-MiLi incorporates sampling rate invariant detection, ensuring accurate packet detection and address filtering even when the receiver's sampling clock rate is much lower than the signal bandwidth. Further, it employs an opportunistic downclocking mechanism to optimize the efficiency of switching clock rate, based on a simple interface to existing MAC-layer scheduling protocols. We have implemented E-MiLi on the USRP software radio platform. Our experimental evaluation shows that E-MiLi can detect packets with close to 100 percent accuracy even with downclocking by a factor of 16. When integrated with 802.11, E-MiLi can reduce energy consumption by around 44 percent for 92 percent of users in real-world wireless networks.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations

Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of self-interference mitigation techniques for in-band full-duplex (IBFD) wireless systems and discuss the challenges and opportunities in the design and analysis of IBFD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. One of the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference that the modem's transmitter causes to its own receiver. This tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,752 citations

Posted Content
TL;DR: This tutorial surveys a wide range of IBFD self-interference mitigation techniques and discusses numerous other research challenges and opportunities in the design and analysis of IB FD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. Because one the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference caused by an IBFD node's own transmissions to its desired receptions, this tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,549 citations