scispace - formally typeset
Search or ask a question
Author

Xinzheng Xu

Bio: Xinzheng Xu is an academic researcher from China University of Mining and Technology. The author has contributed to research in topics: Artificial neural network & Extreme learning machine. The author has an hindex of 9, co-authored 20 publications receiving 721 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper describes the latest progress of ELM in recent years, including the model and specific applications of ELm, and finally points out the research and development prospects ofELM in the future.
Abstract: Extreme learning machine (ELM) is a new learning algorithm for the single hidden layer feedforward neural networks Compared with the conventional neural network learning algorithm it overcomes the slow training speed and over-fitting problems ELM is based on empirical risk minimization theory and its learning process needs only a single iteration The algorithm avoids multiple iterations and local minimization It has been used in various fields and applications because of better generalization ability, robustness, and controllability and fast learning rate In this paper, we make a review of ELM latest research progress about the algorithms, theory and applications It first analyzes the theory and the algorithm ideas of ELM, then tracking describes the latest progress of ELM in recent years, including the model and specific applications of ELM, finally points out the research and development prospects of ELM in the future

429 citations

Journal ArticleDOI
TL;DR: The principle and algorithm of extreme learning machine (ELM), a novel learning algorithm for single-hidden-layer feedforward neural networks (SLFNs), are described, which provides extremely faster learning speed, better generalization performance and with least human intervention.
Abstract: Recently, a novel learning algorithm for single-hidden-layer feedforward neural networks (SLFNs) named extreme learning machine (ELM) was proposed by Huang et al. The essence of ELM is that the learning parameters of hidden nodes, including input weights and biases, are randomly assigned and need not be tuned while the output weights can be analytically determined by the simple generalized inverse operation. The only parameter needed to be defined is the number of hidden nodes. Compared with other traditional learning algorithms for SLFNs, ELM provides extremely faster learning speed, better generalization performance and with least human intervention. This paper firstly introduces a brief review of ELM, describing the principle and algorithm of ELM. Then, we put emphasis on the improved methods or the typical variants of ELM, especially on incremental ELM, pruning ELM, error-minimized ELM, two-stage ELM, online sequential ELM, evolutionary ELM, voting-based ELM, ordinal ELM, fully complex ELM, and symmetric ELM. Next, the paper summarized the applications of ELM on classification, regression, function approximation, pattern recognition, forecasting and diagnosis, and so on. In the last, the paper discussed several open issues of ELM, which may be worthy of exploring in the future.

187 citations

Journal ArticleDOI
TL;DR: The basic concepts of graph theory are introduced and main matrix representations of the graph are reviewed, then the objective functions of typical graph cut methods are compared, and the nature of spectral clustering algorithm is explored.
Abstract: Spectral clustering is a clustering method based on algebraic graph theory. It has aroused extensive attention of academia in recent years, due to its solid theoretical foundation, as well as the good performance of clustering. This paper introduces the basic concepts of graph theory and reviews main matrix representations of the graph, then compares the objective functions of typical graph cut methods and explores the nature of spectral clustering algorithm. We also summarize the latest research achievements of spectral clustering and discuss several key issues in spectral clustering, such as how to construct similarity matrix and Laplacian matrix, how to select eigenvectors, how to determine cluster number, and the applications of spectral clustering. At last, we propose several valuable research directions in light of the deficiencies of spectral clustering algorithms.

139 citations

Journal ArticleDOI
01 Sep 2016
TL;DR: A method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm, exhibited better performances.
Abstract: Graphical abstractDisplay Omitted This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm. In this fusion model, two source images, A and B, were first processed by the QPSO-PCNN model, respectively. Through the QPSO algorithm, the PCNN model could find the optimal parameters for the source images, A and B. To improve the efficiency and quality of QPSO, three evaluation criteria, image entropy (EN), average gradient (AG) and spatial frequency (SF) were selected as the hybrid fitness function. Then, the output of the fusion model was obtained by the judgment factor according to the firing maps of two source images, which maybe was the pixel value of the image A, or that of the image B, or the tradeoff value of them. Based on the output of the fusion model, the fused image was gained. Finally, we used five pairs of multimodal medical images as experimental data to test and verify the proposed method. Furthermore, the mutual information (MI), structural similarity (SSIM), image entropy (EN), etc. were used to judge the performances of different methods. The experimental results illustrated that the proposed method exhibited better performances.

98 citations

Journal ArticleDOI
TL;DR: The paper primarily introduces the application frameworks that combine sample selection and dimensionality reduction in the context of two aspects: sequential and simultaneous, which almost all get the ideal results in the processing of the large-scale training data contrasting to the original models

94 citations


Cited by
More filters
Journal ArticleDOI
Junfei Qiu1, Qihui Wu1, Guoru Ding1, Yuhua Xu1, Shuo Feng1 
TL;DR: A literature survey of the latest advances in researches on machine learning for big data processing finds some promising learning methods in recent studies, such as representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and kernel-based learning.
Abstract: There is no doubt that big data are now rapidly expanding in all science and engineering domains. While the potential of these massive data is undoubtedly significant, fully making sense of them requires new ways of thinking and novel learning techniques to address the various challenges. In this paper, we present a literature survey of the latest advances in researches on machine learning for big data processing. First, we review the machine learning techniques and highlight some promising learning methods in recent studies, such as representation learning, deep learning, distributed and parallel learning, transfer learning, active learning, and kernel-based learning. Next, we focus on the analysis and discussions about the challenges and possible solutions of machine learning for big data. Following that, we investigate the close connections of machine learning with signal processing techniques for big data processing. Finally, we outline several open issues and research trends.

636 citations

Journal ArticleDOI
TL;DR: This paper gives the first comprehensive analysis of class imbalance in data streams, in terms of data distributions, imbalance rates and changes in class imbalance status, and proposes two new ensemble methods that maintain both OOB and UOB with adaptive weights for final predictions, called WEOB1 and WEOb2.
Abstract: Online class imbalance learning is a new learning problem that combines the challenges of both online learning and class imbalance learning. It deals with data streams having very skewed class distributions. This type of problems commonly exists in real-world applications, such as fault diagnosis of real-time control monitoring systems and intrusion detection in computer networks. In our earlier work, we defined class imbalance online, and proposed two learning algorithms OOB and UOB that build an ensemble model overcoming class imbalance in real time through resampling and time-decayed metrics. In this paper, we further improve the resampling strategy inside OOB and UOB, and look into their performance in both static and dynamic data streams. We give the first comprehensive analysis of class imbalance in data streams, in terms of data distributions, imbalance rates and changes in class imbalance status. We find that UOB is better at recognizing minority-class examples in static data streams, and OOB is more robust against dynamic changes in class imbalance status. The data distribution is a major factor affecting their performance. Based on the insight gained, we then propose two new ensemble methods that maintain both OOB and UOB with adaptive weights for final predictions, called WEOB1 and WEOB2. They are shown to possess the strength of OOB and UOB with good accuracy and robustness.

299 citations

Journal ArticleDOI
TL;DR: This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies and presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city.
Abstract: Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.

274 citations

Journal ArticleDOI
TL;DR: A new efficient diagnostic approach to integrate machine learning and gas chromatography-mass spectrometry (GC-MS), named GEE, is proposed to identify the paraquat poisoned patients and might serve as a novel candidate diagnosis of PQ-poisoned patients.

274 citations

Journal ArticleDOI
TL;DR: In this paper, the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including leaf area index (LAI), above ground fresh and dry biomass.
Abstract: Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAI was best predicted by RGB and thermal data fusion while multispectral and thermal data fusion was found to be best for biomass estimation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion, ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion of low-cost multiple sensor data within a machine learning framework can provide relatively accurate estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant stress assessment.

220 citations