scispace - formally typeset
Search or ask a question
Author

Xiu-Liang Lv

Bio: Xiu-Liang Lv is an academic researcher from Beijing University of Technology. The author has contributed to research in topics: Metal-organic framework & Aqueous solution. The author has an hindex of 20, co-authored 31 publications receiving 3280 citations. Previous affiliations of Xiu-Liang Lv include Qingdao University & Texas A&M University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the application of metal-organic frameworks (MOFs) in photocatalytic degradation of organic pollutants is presented, where the reported examples are collected and analyzed; and the reaction mechanism, the influence of various factors on the catalytic performance, involved challenges, and the prospect are discussed and estimated.
Abstract: Efficient removal of organic pollutants from wastewater has become a hot research topic due to its ecological and environmental importance. Traditional water treatment methods such as adsorption, coagulation, and membrane separation suffer from high operating costs, and even generate secondary pollutants. Photocatalysis on semiconductor catalysts (TiO2, ZnO, Fe2O3, CdS, GaP, and ZnS) has demonstrated efficiency in degrading a wide range of organic pollutants into biodegradable or less toxic organic compounds, as well as inorganic CO2, H2O, NO3−, PO43−, and halide ions. However, the difficult post-separation, easy agglomeration, and low solar energy conversion efficiency of these inorganic catalysts limit their large scale applications. Exploitation of new catalysts has been attracting great attention in the related research communities. In the past two decades, a class of newly-developed inorganic–organic hybrid porous materials, namely metal–organic frameworks (MOFs) has generated rapid development due to their versatile applications such as in catalysis and separation. Recent research has showed that these materials, acting as catalysts, are quite effective in the photocatalytic degradation of organic pollutants. This review highlights research progress in the application of MOFs in this area. The reported examples are collected and analyzed; and the reaction mechanism, the influence of various factors on the catalytic performance, the involved challenges, and the prospect are discussed and estimated. It is clear that MOFs have a bright future in photocatalysis for pollutant degradation.

1,338 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency and be potentially useful in monitoring water quality and treating wastewater.
Abstract: Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal–organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5′-(4-carboxyphenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6′,6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer–Emmett–Teller surface area of 3387 and 3948 m2 g–1, respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs ...

1,164 citations

Journal ArticleDOI
TL;DR: This work is the first identified MOF that can retain its crystallinity and porosity in saturated sodium hydroxide solution (∼ 20 mol/L) at room temperature and 100 °C and tries to interpret the stability of PCN-601 from both thermodynamic and kinetic perspectives.
Abstract: Guided by a top-down topological analysis, a metal–organic framework (MOF) constructed by pyrazolate-based porphyrinic ligand, namely, PCN-601, has been rationally designed and synthesized, and it exhibits excellent stability in alkali solutions. It is, to the best of our knowledge, the first identified MOF that can retain its crystallinity and porosity in saturated sodium hydroxide solution (∼20 mol/L) at room temperature and 100 °C. This almost pushes base-resistance of porphyrinic MOFs (even if MOFs) to the limit in aqueous media and greatly extends the range of their potential applications. In this work, we also tried to interpret the stability of PCN-601 from both thermodynamic and kinetic perspectives.

251 citations

Journal ArticleDOI
TL;DR: Interestingly, the Mn3+-porphyrinic PCN-602, as a recyclable MOF catalyst, presents high catalytic activity for the C-H bond halogenation reaction in a basic system, significantly outperforming its homogeneous counterpart.
Abstract: A base-resistant porphyrin metal–organic framework (MOF), namely PCN-602 has been constructed with 12-connected [Ni8(OH)4(H2O)2Pz12] (Pz = pyrazolate) cluster and a newly designed pyrazolate-based porphyrin ligand, 5,10,15,20-tetrakis(4-(pyrazolate-4-yl)phenyl)porphyrin under the guidance of the reticular synthesis strategy. Besides its robustness in hydroxide solution, PCN-602 also shows excellent stability in aqueous solutions of F–, CO32–, and PO43– ions. Interestingly, the Mn3+-porphyrinic PCN-602, as a recyclable MOF catalyst, presents high catalytic activity for the C–H bond halogenation reaction in a basic system, significantly outperforming its homogeneous counterpart. For the first time, a porphyrinic MOF was thus used as an efficient catalyst in a basic solution with coordinating anions, to the best of our knowledge.

220 citations

Journal ArticleDOI
TL;DR: Attributed to these additional functional groups (carbonyl and sulfone, respectively) in the ligands, BUT-10 and -11 show enhanced CO2 adsorption and separation selectivities over N2 and CH4, in spite of decreased pore sizes and surface areas compared with UiO-67.
Abstract: Introducing functional groups into pores of metal–organic frameworks (MOFs) through ligand modification provides an efficacious approach for tuning gas adsorption and separation performances of this type of novel porous material. In this work, two UiO-67 analogues, [Zr6O4(OH)4(FDCA)6] (BUT-10) and [Zr6O4(OH)4(DTDAO)6] (BUT-11), with functionalized pore surfaces and high stability were synthesized from two functional ligands, 9-fluorenone-2,7-dicarboxylic acid (H2FDCA) and dibenzo[b,d]thiophene-3,7-dicarboxylic acid 5,5-dioxide (H2DTDAO), respectively, and structurally determined by single-crystal X-ray diffraction. Notwithstanding skeleton bend of the two ligands relative to the linear 4,4′-biphenyldicarboxylic acid in UiO-67, the two MOFs have structures similar to that of UiO-67, with only lowered symmetry in their frameworks. Attributed to these additional functional groups (carbonyl and sulfone, respectively) in the ligands, BUT-10 and -11 show enhanced CO2 adsorption and separation selectivities over...

205 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.
Abstract: Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure–property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

2,239 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: This review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Abstract: Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in gas storage, separations, catalysis, and chemical sensing. Despite numerous advantages, applications of many MOFs are ultimately limited by their stability under harsh conditions. Herein, the recent advances in the field of stable MOFs, covering the fundamental mechanisms of MOF stability, design, and synthesis of stable MOF architectures, and their latest applications are reviewed. First, key factors that affect MOF stability under certain chemical environments are introduced to guide the design of robust structures. This is followed by a short review of synthetic strategies of stable MOFs including modulated synthesis and postsynthetic modifications. Based on the fundamentals of MOF stability, stable MOFs are classified into two categories: high-valency metal-carboxylate frameworks and low-valency metal-azolate frameworks. Along this line, some representative stable MOFs are introduced, their structures are described, and their properties are briefly discussed. The expanded applications of stable MOFs in Lewis/Bronsted acid catalysis, redox catalysis, photocatalysis, electrocatalysis, gas storage, and sensing are highlighted. Overall, this review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.

1,721 citations

Journal ArticleDOI
TL;DR: Advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications to provide guidance for the in-depth investigation of MOFs towards practical applications.
Abstract: Among the large family of metal–organic frameworks (MOFs), Zr-based MOFs, which exhibit rich structure types, outstanding stability, intriguing properties and functions, are foreseen as one of the most promising MOF materials for practical applications. Although this specific type of MOF is still in its early stage of development, significant progress has been made in recent years. Herein, advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications. Four synthesis strategies implemented in building and/or modifying Zr-MOFs as well as their scale-up preparation under green and industrially feasible conditions are illustrated first. Zr-MOFs with various structural types are then classified and discussed in terms of different Zr-based secondary building units and organic ligands. Finally, applications of Zr-MOFs in catalysis, molecule adsorption and separation, drug delivery, and fluorescence sensing, and as porous carriers are highlighted. Such a review based on a specific type of MOF is expected to provide guidance for the in-depth investigation of MOFs towards practical applications.

1,692 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency and be potentially useful in monitoring water quality and treating wastewater.
Abstract: Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal–organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5′-(4-carboxyphenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6′,6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer–Emmett–Teller surface area of 3387 and 3948 m2 g–1, respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs ...

1,164 citations