scispace - formally typeset
Search or ask a question
Author

Xiuling Jiao

Bio: Xiuling Jiao is an academic researcher from Shandong University. The author has contributed to research in topics: Electrospinning & Materials science. The author has an hindex of 39, co-authored 156 publications receiving 5335 citations.


Papers
More filters
Journal ArticleDOI
Zhen Jiang1, Zhengping Li1, Zhenhua Qin1, Haiyan Sun1, Xiuling Jiao1, Dairong Chen1 
TL;DR: This is the first synthesis of the LDH non-spherical structures and the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.
Abstract: Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal–organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni–Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.

529 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal structure and surface organic groups of the nanoplates were characterized in detail, and it was shown that poly(vinylpyrrolidone) molecules played a key role for the growth of nanplates.
Abstract: γ-Fe2O3 nanoplates were prepared by a simple solution process and could be transformed to Fe3O4 nanoplates while keeping the size and morphology unchanged after reduction in hydrazine solution. The crystal structure and surface organic groups of the nanoplates were characterized in detail. The nanoplates exhibited good dispersibility in polar solvents except water and strong dipolar interactions, which favored the formation of one-dimensional chainlike structure. The poly(vinylpyrrolidone) molecules in this system played a key role for the growth of nanoplates, and it was supposed that the formation of nanoplates was a kinetically controlled process. The γ-Fe2O3 and Fe3O4 nanoplates with strong dipolar interactions are ferromagnetic at room temperature.

280 citations

Journal ArticleDOI
Tao He1, Dairong Chen1, Xiuling Jiao1, Yingling Wang1, Yongzheng Duan1 
TL;DR: In this paper, a liquid phase redox process was designed to prepare monodispersed Co3O4 nanocrystals with particle sizes of 2 nm (spherical), 2.5 nm (cubelike), and 4.7 nm (closest to ours).
Abstract: A liquid-phase redox process has been designed to prepare monodispersed Co3O4 nanocrystals with particle sizes of 2 nm (spherical), 2.5 nm (cubelike), and 4.7 nm (cubelike). The nanocrystals were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric techniques. The nucleation and growth, which were tracked by UV−visible spectroscopy, can be separated by adjusting the solubility of sodium nitrate, and the smallest possible Co3O4 nanocubes, 2.5 nm on a side, were obtained. A solubility-controlled mechanism for the redox reaction is discussed which is critical in avoiding secondary nucleation and interparticle ripening growth of Co3O4 nanocrystals.

252 citations

Journal ArticleDOI
TL;DR: Amorphous cobalt sulfide polyhedral nanocages are synthesized by utilizing zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as templates.
Abstract: Amorphous cobalt sulfide polyhedral nanocages are synthesized by utilizing zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as templates. Electrochemical characterization shows that CoS nanocages exhibit high specific capacitances, owing to their amorphous phase and novel structures.

243 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal ArticleDOI
TL;DR: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology as discussed by the authors, and a comprehensive overview of synthetic strategies for hollow structures is presented.
Abstract: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-/nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed.

2,767 citations