scispace - formally typeset
Search or ask a question
Author

Xuehai Qian

Bio: Xuehai Qian is an academic researcher from University of Southern California. The author has contributed to research in topics: Speedup & Deep learning. The author has an hindex of 25, co-authored 107 publications receiving 2537 citations. Previous affiliations of Xuehai Qian include Rutgers University & Chinese Academy of Sciences.


Papers
More filters
Proceedings ArticleDOI
01 Feb 2017
TL;DR: PipeLayer is presented, a ReRAM-based PIM accelerator for CNNs that support both training and testing and proposes highly parallel design based on the notion of parallelism granularity and weight replication, which enables the highly pipelined execution of bothTraining and testing, without introducing the potential stalls in previous work.
Abstract: Convolution neural networks (CNNs) are the heart of deep learning applications. Recent works PRIME [1] and ISAAC [2] demonstrated the promise of using resistive random access memory (ReRAM) to perform neural computations in memory. We found that training cannot be efficiently supported with the current schemes. First, they do not consider weight update and complex data dependency in training procedure. Second, ISAAC attempts to increase system throughput with a very deep pipeline. It is only beneficial when a large number of consecutive images can be fed into the architecture. In training, the notion of batch (e.g. 64) limits the number of images can be processed consecutively, because the images in the next batch need to be processed based on the updated weights. Third, the deep pipeline in ISAAC is vulnerable to pipeline bubbles and execution stall. In this paper, we present PipeLayer, a ReRAM-based PIM accelerator for CNNs that support both training and testing. We analyze data dependency and weight update in training algorithms and propose efficient pipeline to exploit inter-layer parallelism. To exploit intra-layer parallelism, we propose highly parallel design based on the notion of parallelism granularity and weight replication. With these design choices, PipeLayer enables the highly pipelined execution of both training and testing, without introducing the potential stalls in previous work. The experiment results show that, PipeLayer achieves the speedups of 42.45x compared with GPU platform on average. The average energy saving of PipeLayer compared with GPU implementation is 7.17x.

633 citations

Proceedings ArticleDOI
14 Oct 2017
TL;DR: The CirCNN architecture is proposed, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc) and FFT can be used as the key computing kernel which ensures universal and small-footprint implementations.
Abstract: Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning, which affects performance and throughput; 2) the increased training complexity; and 3) the lack of rigirous guarantee of compression ratio and inference accuracy.To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from $\mathrm {O}(n^{2})$ to $\mathrm {O}(n$ log n) and the storage complexity from $\mathrm {O}(n^{2})$ to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: the DNNs based on CirCNN can converge to the same “effectiveness” as DNNs without compression. We propose the CirCNN architecture, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc In CirCNN architecture: 1) Due to the recursive property, FFT can be used as the key computing kernel which ensures universal and small-footprint implementations. 2) The compressed but regular network structure avoids the pitfalls of the network pruning and facilitates high performance and throughput with highly pipelined and parallel design. To demonstrate the performance and energy efficiency, we test CIR-CNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6 - 102X energy efficiency improvements compared with the best state-of-the-art results.CCS Concepts• Computer systems organization$\rightarrow $ Embedded hardware;

262 citations

Proceedings ArticleDOI
01 Feb 2018
TL;DR: GRAPHR as discussed by the authors is the first ReRAM-based graph processing accelerator, which is based on the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost.
Abstract: Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation. This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01× (up to 132.67×) speedup and a 33.82× energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69× to 2.19× speedup and consumes 4.77× to 8.91× less energy. GRAPHR gains a speedup of 1.16× to 4.12×, and is 3.67× to 10.96× more energy efficiency compared to PIM-based architecture.

232 citations

Proceedings ArticleDOI
04 Apr 2017
TL;DR: DUDETM is presented, a crash-consistent durable transaction system that avoids the drawbacks of both undo logging and redo logging and can be implemented with existing hardware TMs with minor hardware modifications, leading to a further 1.7times speedup.
Abstract: Emerging non-volatile memory (NVM) offers non-volatility, byte-addressability and fast access at the same time. To make the best use of these properties, it has been shown by empirical evidence that programs should access NVM directly through CPU load and store instructions, so that the overhead of a traditional file system or database can be avoided. Thus, durable transactions become a common choice of applications for accessing persistent memory data in a crash consistent manner. However, existing durable transaction systems employ either undo logging, which requires a fence for every memory write, or redo logging, which requires intercepting all memory reads within transactions.This paper presents DUDETM, a crash-consistent durable transaction system that avoids the drawbacks of both undo logging and redo logging. DUDETM uses shadow DRAM to decouple the execution of a durable transaction into three fully asynchronous steps. The advantage is that only minimal fences and no memory read instrumentation are required. This design also enables an out-of-the-box transactional memory (TM) to be used as an independent component in our system. The evaluation results show that DUDETM adds durability to a TM system with only 7.4 ~ 24.6% throughput degradation. Compared to the existing durable transaction systems, DUDETM provides 1.7times to 4.4times higher throughput. Moreover, DUDETM can be implemented with existing hardware TMs with minor hardware modifications, leading to a further 1.7times speedup.

179 citations

Proceedings ArticleDOI
01 Feb 2018
TL;DR: It is argued that a PIM-based graph processing system should take data organization as a first-order design consideration and proposed GraphP, a novel HMC-based software/hardware co-designed graphprocessing system that drastically reduces communication and energy consumption compared to TESSERACT.
Abstract: Processing-In-Memory (PIM) is an effective technique that reduces data movements by integrating processing units within memory. The recent advance of “big data” and 3D stacking technology make PIM a practical and viable solution for the modern data processing workloads. It is exemplified by the recent research interests on PIM-based acceleration. Among them, TESSERACT is a PIM-enabled parallel graph processing architecture based on Micron’s Hybrid Memory Cube (HMC), one of the most prominent 3D-stacked memory technologies. It implements a Pregel-like vertex-centric programming model, so that users could develop programs in the familiar interface while taking advantage of PIM. Despite the orders of magnitude speedup compared to DRAM-based systems, TESSERACT generates excessive crosscube communications through SerDes links, whose bandwidth is much less than the aggregated local bandwidth of HMCs. Our investigation indicates that this is because of the restricted data organization required by the vertex programming model. In this paper, we argue that a PIM-based graph processing system should take data organization as a first-order design consideration. Following this principle, we propose GraphP, a novel HMC-based software/hardware co-designed graph processing system that drastically reduces communication and energy consumption compared to TESSERACT. GraphP features three key techniques. 1) “Source-cut” partitioning, which fundamentally changes the cross-cube communication from one remote put per cross-cube edge to one update per replica. 2) “Two-phase Vertex Program”, a programming model designed for the “source-cut” partitioning with two operations: GenUpdate and ApplyUpdate. 3) Hierarchical communication and overlapping, which further improves performance with unique opportunities offered by the proposed partitioning and programming model. We evaluate GraphP using a cycle accurate simulator with 5 real-world graphs and 4 algorithms. The results show that it provides on average 1.7 speedup and 89% energy saving compared to TESSERACT.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review provides an overview of memory devices and the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing.
Abstract: Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.

841 citations

Journal ArticleDOI
20 Mar 2020
TL;DR: This article reviews the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification, and answers the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures.
Abstract: Domain-specific hardware is becoming a promising topic in the backdrop of improvement slow down for general-purpose processors due to the foreseeable end of Moore’s Law. Machine learning, especially deep neural networks (DNNs), has become the most dazzling domain witnessing successful applications in a wide spectrum of artificial intelligence (AI) tasks. The incomparable accuracy of DNNs is achieved by paying the cost of hungry memory consumption and high computational complexity, which greatly impedes their deployment in embedded systems. Therefore, the DNN compression concept was naturally proposed and widely used for memory saving and compute acceleration. In the past few years, a tremendous number of compression techniques have sprung up to pursue a satisfactory tradeoff between processing efficiency and application accuracy. Recently, this wave has spread to the design of neural network accelerators for gaining extremely high performance. However, the amount of related works is incredibly huge and the reported approaches are quite divergent. This research chaos motivates us to provide a comprehensive survey on the recent advances toward the goal of efficient compression and execution of DNNs without significantly compromising accuracy, involving both the high-level algorithms and their applications in hardware design. In this article, we review the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification. We explain their compression principles, evaluation metrics, sensitivity analysis, and joint-way use. Then, we answer the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures. In the end, we discuss several existing issues such as fair comparison, testing workloads, automatic compression, influence on security, and framework/hardware-level support, and give promising topics in this field and the possible challenges as well. This article attempts to enable readers to quickly build up a big picture of neural network compression and acceleration, clearly evaluate various methods, and confidently get started in the right way.

499 citations

Proceedings ArticleDOI
02 Jun 2018
TL;DR: This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI, and achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1.5 teraflops.
Abstract: Interactive AI-powered services require low-latency evaluation of deep neural network (DNN) models—aka ""real-time AI"". The growing demand for computationally expensive, state-of-the-art DNNs, coupled with diminishing performance gains of general-purpose architectures, has fueled an explosion of specialized Neural Processing Units (NPUs). NPUs for interactive services should satisfy two requirements: (1) execution of DNN models with low latency, high throughput, and high efficiency, and (2) flexibility to accommodate evolving state-of-the-art models (e.g., RNNs, CNNs, MLPs) without costly silicon updates. This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI. The Brainwave NPU achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1. The NPU attains this performance using a single-threaded SIMD ISA paired with a distributed microarchitecture capable of dispatching over 7M operations from a single instruction. The spatially distributed microarchitecture, scaled up to 96,000 multiply-accumulate units, is supported by hierarchical instruction decoders and schedulers coupled with thousands of independently addressable high-bandwidth on-chip memories, and can transparently exploit many levels of fine-grain SIMD parallelism. When targeting an FPGA, microarchitectural parameters such as native datapaths and numerical precision can be "synthesis specialized" to models at compile time, enabling atypically high FPGA performance competitive with hardened NPUs. When running on an Intel Stratix 10 280 FPGA, the Brainwave NPU achieves performance ranging from ten to over thirty-five teraflops, with no batching, on large, memory-intensive RNNs.

498 citations

Proceedings ArticleDOI
02 Jun 2018
TL;DR: This work designs Bit Fusion, a bit-flexible accelerator that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers, and compares it to two state-of-the-art DNN accelerators, Eyeriss and Stripes.
Abstract: Hardware acceleration of Deep Neural Networks (DNNs) aims to tame their enormous compute intensity. Fully realizing the potential of acceleration in this domain requires understanding and leveraging algorithmic properties of DNNs. This paper builds upon the algorithmic insight that bitwidth of operations in DNNs can be reduced without compromising their classification accuracy. However, to prevent loss of accuracy, the bitwidth varies significantly across DNNs and it may even be adjusted for each layer individually. Thus, a fixed-bitwidth accelerator would either offer limited benefits to accommodate the worst-case bitwidth requirements, or inevitably lead to a degradation in final accuracy. To alleviate these deficiencies, this work introduces dynamic bit-level fusion/decomposition as a new dimension in the design of DNN accelerators. We explore this dimension by designing Bit Fusion, a bit-flexible accelerator, that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers. This flexibility in the architecture enables minimizing the computation and the communication at the finest granularity possible with no loss in accuracy. We evaluate the benefits of Bit Fusion using eight real-world feed-forward and recurrent DNNs. The proposed microarchitecture is implemented in Verilog and synthesized in 45 nm technology. Using the synthesis results and cycle accurate simulation, we compare the benefits of Bit Fusion to two state-of-the-art DNN accelerators, Eyeriss [1] and Stripes [2]. In the same area, frequency, and process technology, Bit Fusion offers 3.9X speedup and 5.1X energy savings over Eyeriss. Compared to Stripes, Bit Fusion provides 2.6X speedup and 3.9X energy reduction at 45 nm node when Bit Fusion area and frequency are set to those of Stripes. Scaling to GPU technology node of 16 nm, Bit Fusion almost matches the performance of a 250-Watt Titan Xp, which uses 8-bit vector instructions, while Bit Fusion merely consumes 895 milliwatts of power.

442 citations

Proceedings ArticleDOI
26 Mar 2019
TL;DR: This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.
Abstract: At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.

385 citations