scispace - formally typeset
Search or ask a question
Author

Xuemin Sherman Shen

Bio: Xuemin Sherman Shen is an academic researcher from University of Waterloo. The author has contributed to research in topics: Vehicular ad hoc network & Cellular network. The author has an hindex of 47, co-authored 271 publications receiving 8356 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The architecture and features of fog computing are reviewed and critical roles of fog nodes are studied, including real-time services, transient storage, data dissemination and decentralized computation, which are expected to draw more attention and efforts into this new architecture.
Abstract: Internet of Things (IoT) allows billions of physical objects to be connected to collect and exchange data for offering various applications, such as environmental monitoring, infrastructure management, and home automation. On the other hand, IoT has unsupported features (e.g., low latency, location awareness, and geographic distribution) that are critical for some IoT applications, including smart traffic lights, home energy management and augmented reality. To support these features, fog computing is integrated into IoT to extend computing, storage and networking resources to the network edge. Unfortunately, it is confronted with various security and privacy risks, which raise serious concerns towards users. In this survey, we review the architecture and features of fog computing and study critical roles of fog nodes, including real-time services, transient storage, data dissemination and decentralized computation. We also examine fog-assisted IoT applications based on different roles of fog nodes. Then, we present security and privacy threats towards IoT applications and discuss the security and privacy requirements in fog computing. Further, we demonstrate potential challenges to secure fog computing and review the state-of-the-art solutions used to address security and privacy issues in fog computing for IoT applications. Finally, by defining several open research issues, it is expected to draw more attention and efforts into this new architecture.

499 citations

Journal ArticleDOI
TL;DR: This article first introduces promising smart city applications and architecture, then discusses several security and privacy challenges in these applications, and introduces some open issues for future research.
Abstract: With the flourishing and advancement of the IoT, the smart city has become an emerging paradigm, consisting of ubiquitous sensing, heterogeneous network infrastructure, and intelligent information processing and control systems. A smart city can monitor the physical world in real time, and provide intelligent services to both local residents and travelers in terms of transportation, healthcare, environment, entertainment, and energy. However, security and privacy concerns arise, since smart city applications not only collect a wide range of privacy-sensitive information from people and their social circles, but also control city facilities and influence people’s lives. In this article, we investigate security and privacy in smart city applications. Specifically, we first introduce promising smart city applications and architecture. Then we discuss several security and privacy challenges in these applications. Some research efforts are subsequently presented to address these security and privacy challenges for intelligent healthcare, transportation, and smart energy. Finally, we point out some open issues for future research.

449 citations

Journal ArticleDOI
TL;DR: This article introduces an mmWave+4G system architecture with TDMA-based MAC structure as a candidate for 5G cellular networks and proposes an effective resource sharing scheme by allowing non-interfering D2D links to operate concurrently.
Abstract: Millimeter-wave communication is a promising technology for future 5G cellular networks to provide very high data rate (multi-gigabits-persecond) for mobile devices. Enabling D2D communications over directional mmWave networks is of critical importance to efficiently use the large bandwidth to increase network capacity. In this article, the propagation features of mmWave communication and the associated impacts on 5G cellular networks are discussed. We introduce an mmWave+4G system architecture with TDMA-based MAC structure as a candidate for 5G cellular networks. We propose an effective resource sharing scheme by allowing non-interfering D2D links to operate concurrently. We also discuss neighbor discovery for frequent handoffs in 5G cellular networks.

375 citations

Journal ArticleDOI
TL;DR: A software defined spaceair- ground integrated network architecture for supporting diverse vehicular services in a seamless, efficient, and cost-effective manner is proposed.
Abstract: This article proposes a software defined spaceair- ground integrated network architecture for supporting diverse vehicular services in a seamless, efficient, and cost-effective manner. First, the motivations and challenges for integration of space-air-ground networks are reviewed. Second, a software defined network architecture with a layered structure is presented. To protect the legacy services in the satellite, aerial, and terrestrial segments, resources in each segment are sliced through network slicing to achieve service isolation. Then available resources are put into a common and dynamic space-air-ground resource pool, which is managed by hierarchical controllers to accommodate vehicular services. Finally, a case study is carried out, followed by discussion on some open research topics.

339 citations

Journal ArticleDOI
TL;DR: With the assistance of UAVs, the twolayer cooperative networking can facilitate applications such as disaster rescue and polluted area investigation and can shed light on extending the applications of vehicular networks in an extreme environment.
Abstract: In this article, an aerial-ground cooperative vehicular networking architecture is proposed. Multiple unmanned aerial vehicles (UAVs), forming an aerial subnetwork, aid the ground vehicular subnetwork through air-to-air (A2A) and air-to-ground (A2G) communications. UAVs can be dispatched to areas of interest to collect information, and transmit it to ground vehicles. Moreover, UAVs can act as intermediate relays due to their flexible mobility when network partitions happen in the ground vehicular subnetwork. With the assistance of UAVs, the twolayer cooperative networking can facilitate applications such as disaster rescue and polluted area investigation. Potential research issues and challenges in multi-UAV-aided vehicular networks are presented and discussed, which can shed light on extending the applications of vehicular networks in an extreme environment.

278 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Posted Content
TL;DR: This paper defines and explores proofs of retrievability (PORs), a POR scheme that enables an archive or back-up service to produce a concise proof that a user can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.
Abstract: In this paper, we define and explore proofs of retrievability (PORs). A POR scheme enables an archive or back-up service (prover) to produce a concise proof that a user (verifier) can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially designed to handle a large file (or bitstring) F. We explore POR protocols here in which the communication costs, number of memory accesses for the prover, and storage requirements of the user (verifier) are small parameters essentially independent of the length of F. In addition to proposing new, practical POR constructions, we explore implementation considerations and optimizations that bear on previously explored, related schemes.In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge of F. PORs give rise to a new and unusual security definition whose formulation is another contribution of our work.We view PORs as an important tool for semi-trusted online archives. Existing cryptographic techniques help users ensure the privacy and integrity of files they retrieve. It is also natural, however, for users to want to verify that archives do not delete or modify files prior to retrieval. The goal of a POR is to accomplish these checks without users having to download the files themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is retrievable within a certain time bound.

1,783 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations