scispace - formally typeset
Search or ask a question
Author

Xueming Lin

Bio: Xueming Lin is an academic researcher from New Jersey Institute of Technology. The author has contributed to research in topics: Filter bank & Communications system. The author has an hindex of 1, co-authored 3 publications receiving 266 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents conventional and emerging applications of orthogonal synthesis/analysis transform configurations (transmultiplexer) in communications and tries to increase the visibility of emerging communication applications of Orthogonal filter banks to generate more research activity in the signal processing community on these topics.
Abstract: This paper presents conventional and emerging applications of orthogonal synthesis/analysis transform configurations (transmultiplexer) in communications. It emphasizes that orthogonality is the underlying concept in the design of many communication systems. It is shown that orthogonal filter banks (subband transforms) with proper time-frequency features can play a more important role in the design of new systems. The general concepts of filter bank theory are tied together with the application-specific requirements of several different communication systems. Therefore, this paper is an attempt to increase the visibility of emerging communication applications of orthogonal filter banks and to generate more research activity in the signal processing community on these topics.

266 citations

01 Jan 1998
TL;DR: In this article, a nonmaximally decimated multirate filterbank structure is proposed for blind identification of communication channels, which can simultaneously cancel the intersymbol interference (ISI) and suppress the noise enhancement.
Abstract: A novel nonmaximally decimated multirate filterbank structure is proposed for blind identification of communication channels. This structure is shown to be very similar to a form proposed earlier in the literature. It is presented that the proposed blind channel identification algorithm is not sensitive to the characteristics of unknown channel, including mixed phase and zeros on the unit circle. An optimal minimum mean square error based linear equalizer using the blind channel identification scheme is investigated. It is shown that the proposed system outperforms the existing zero-forcing blind equalization algorithms in literature. It can simultaneously cancel the intersymbol interference (ISI) and suppress the noise enhancement. The reconstructed signal to noise ratio is maximized by the proposed algorithm. Simulation results show the superior performance and robustness of the proposed blind identification and equalization scheme.

Cited by
More filters
Journal ArticleDOI
TL;DR: A discrete-time analysis of the orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) multicarrier modulation technique, leading to a modulated transmultiplexer, is presented.
Abstract: A discrete-time analysis of the orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) multicarrier modulation technique, leading to a modulated transmultiplexer, is presented. The conditions of discrete orthogonality are established with respect to the polyphase components of the OFDM/OQAM prototype filter, which is assumed to be symmetrical and with arbitrary length. Fast implementation schemes of the OFDM/OQAM modulator and demodulator are provided, which are based on the inverse fast Fourier transform. Non-orthogonal prototypes create intersymbol and interchannel interferences (ISI and ICI) that, in the case of a distortion-free transmission, are expressed by a closed-form expression. A large set of design examples is presented for OFDM/OQAM systems with the number of subcarriers going from four up to 2048, which also allows a comparison between different approaches to get well-localized prototypes.

1,020 citations

Journal ArticleDOI
TL;DR: This paper addresses basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques.
Abstract: Orthogonal frequency-division multiplexing (OFDM) effectively mitigates intersymbol interference (ISI) caused by the delay spread of wireless channels. Therefore, it has been used in many wireless systems and adopted by various standards. In this paper, we present a comprehensive survey on OFDM for wireless communications. We address basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques. We also describe the applications of OFDM in current systems and standards.

915 citations

Journal ArticleDOI
TL;DR: This paper surveys how the capacity of the linear Gaussian channel has been met during the past half century, and new capacity-approaching techniques include turbo coding and decoding, multilevel coding, and combined coding/precoding for intersymbol-interference channels.
Abstract: Shannon's determination of the capacity of the linear Gaussian channel has posed a magnificent challenge to succeeding generations of researchers. This paper surveys how this challenge has been met during the past half century. Orthogonal minimum-bandwidth modulation techniques and channel capacity are discussed. Binary coding techniques for low-signal-to-noise ratio (SNR) channels and nonbinary coding techniques for high-SNR channels are reviewed. Recent developments, which now allow capacity to be approached on any linear Gaussian channel, are surveyed. These new capacity-approaching techniques include turbo coding and decoding, multilevel coding, and combined coding/precoding for intersymbol-interference channels.

675 citations

Journal ArticleDOI
TL;DR: Transmitter redundancy introduced using filterbank precoders generalizes existing modulations including OFDM, DMT, TDMA, and CDMA schemes encountered with single- and multiuser communications and develops jointly optimal transmitter-receiver filterbank designs based on maximum output SNR and minimum mean-square error criteria.
Abstract: Transmitter redundancy introduced using filterbank precoders generalizes existing modulations including OFDM, DMT, TDMA, and CDMA schemes encountered with single- and multiuser communications. Sufficient conditions are derived to guarantee that with FIR filterbank precoders FIR channels are equalized perfectly in the absence of noise by FIR zero-forcing equalizer filterbanks, irrespective of the channel zero locations. Multicarrier transmissions through frequency-selective channels can thus be recovered even when deep fades are present. Jointly optimal transmitter-receiver filterbank designs are also developed, based on maximum output SNR and minimum mean-square error criteria under zero-forcing and fixed transmitted power constraints. Analytical performance results are presented for the zero-forcing filterbanks and are compared with mean-square error and ideal designs using simulations.

659 citations

01 Sep 1978
TL;DR: The parts of this book of most interest and value to the EMC engineer will be the chapters on Thermal Noise, Antennas, Propagation and Transmission Lines, and Reflection and Refraction.
Abstract: dix A. Even if you don’t choose to memorize them this system aids in reference and retreival of important formulas. The book was compiled from notes developed during eight years of teaching a graduate course on the subject and was used as a text. Thus it has been student tested. Appendix F contains a number of problems, grouped to be used on a chapter by chapter basis The problems are designed to illustrate practical applications of the text material. The parts of this book of most interest and value to the EMC engineer will be the chapters on Thermal Noise, Antennas, Propagation and Transmission Lines, and Reflection and Refraction. This is not to downpade the chapters on Statistics and Its Applications, Signal Processing and Detection, and Some System Characteristics which also contain much potentially useful materials. Additional plus values for the book include a list of 40 references, a table of symbols used throughout the book, and a subject index. Some readers may find the condensed type and close line spacing hard to read. It was apparently set up by typewriter using an elite type face with single line spacing. When reduced down to a 6 by 9 5 inch size page it is too crowded for easy reading. In spite of this shortcoming your reviewer recommends this book as a worthwhile reference in this field of interest.

413 citations