scispace - formally typeset
Search or ask a question
Author

Xuesong Zhang

Bio: Xuesong Zhang is an academic researcher. The author has contributed to research in topics: Shielding effect & Ceramic. The author has an hindex of 2, co-authored 2 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high-entropy ceramic nanofibers (HE-RE2Zr2O7 fibers) were prepared by the electrospinning method for the first time.

25 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of (La 0.2Ce0.2Gd0.3)2(WO4)3 single-phase high-entropy ceramic (HEC) powder was designed, prepared by solid-phase synthesis, and evenly mixed into an epoxy resin (EP) matrix to test the thermal neutron and γ-ray shielding performance.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: High-entropy ceramics with five or more cations have recently attracted significant attention due to their superior properties for various structural and functional applications as mentioned in this paper, and significant efforts were started to increase the entropy, minimize the Gibbs free energy, and achieve stable single-phase high-entropically stable ceramic films.
Abstract: High-entropy ceramics with five or more cations have recently attracted significant attention due to their superior properties for various structural and functional applications. Although the multi-component ceramics have been of interest for several decades, the concept of high-entropy ceramics was defined in 2004 by producing the first high-entropy nitride films. Following the introduction of the entropy stabilization concept, significant efforts were started to increase the entropy, minimize the Gibbs free energy and achieve stable single-phase high-entropy ceramics. High-entropy oxides, nitrides, carbides, borides and hydrides are currently the most popular high-entropy ceramics due to their potential for various applications, while the study of other ceramics, such as silicides, sulfides, fluorides, phosphides, phosphates, oxynitrides, carbonitrides and borocarbonitrides, is also growing fast. In this paper, the progress regarding high-entropy ceramics is reviewed from both experimental and theoretical points of view. Different aspects including the history, principles, compositions, crystal structure, theoretical/empirical design (via density functional theory, molecular dynamics simulation, machine learning, CALPHAD and descriptors), production methods and properties are thoroughly reviewed. The paper specifically attempts to answer how these materials with remarkable structures and properties can be used in future applications.

160 citations

01 Aug 2017
TL;DR: In this article, the authors summarized the latest information about the manufacturing techniques of lanthanum zirconate powder and La2Zr2O7 based thermal barrier coatings.
Abstract: This review article summarizes the latest information about the manufacturing techniques of lanthanum zirconate (La2Zr2O7, LZ) powder and La2Zr2O7 based thermal barrier coatings (TBCs). Lanthanum zirconate is a promising candidate material for TBC applications, due to its lower thermal conductivity and higher thermal stability compared to other traditional TBC systems. In this work, the physical, thermal, and mechanical properties of the powder and coatings are evaluated. The durability experiments of the TBCs in various thermal, mechanical, and corrosive conditions are also reviewed. In addition, theoretical studies on the powder and coatings properties are presented. Finally, future research directions of lanthanum zirconate as TBC applications are proposed.

36 citations

Journal ArticleDOI
TL;DR: In this article, high-entropy ceramic nanofibers (HE-RE2Zr2O7 fibers) were prepared by the electrospinning method for the first time.

25 citations

Journal ArticleDOI
TL;DR: In this paper, the single-phase forming ability of high-entropy rare earth zirconates ceramics (HE-RE2Zr2O7 for short) was investigated in terms of entropy value and cationic radius difference.

12 citations

Journal ArticleDOI
TL;DR: In this article , the authors summarized the recent developments and challenging perspectives of high entropy oxides for chemical catalysis, which are of great importance to guide the future directions of emerging HEO-based catalysis.
Abstract: High entropy oxides (HEOs) have attracted wide interest for chemical catalysis owing to abundant active sites, adjustable specific surface area, stable crystal structure, extraordinary geometric compatibility, and unique electronic balance factors, exhibiting huge potential value for commercial exploitation. Here, the recent progress and current challenges of HEOs from the typical synthetic strategies, unique structural features, and intrinsic properties to applications in both thermocatalysis and electrocatalysis are comprehensively summarized. In brief, the HEOs obtained by different synthetic strategies, along with their structural features and derived physical-chemical properties endowed by the entropy-driven effect, allow them with highly efficient catalytic application performance. More important, the remarkable enhancement of catalytic performance based on the pure and modified HEOs are discussed by analyzing reaction mechanisms to further motivate the development in this emerging field. Finally, the future directions and challenging perspectives for chemical catalysis over HEOs are also put forward. The development of materials science and catalysis technology plays a significant role in promoting human and social progress. The catalytic utilization of high entropy materials (HEMs) has attracted intense attention for chemical catalysis because of their superior thermostability and variable chemical properties. In particular, the high entropy oxides (HEOs) demonstrate huge potential for thermocatalytic and electrocatalytic applications. Modifying HEOs catalysts for targeted reactions would be a promising technical step toward the development of materials science and catalysis technology. Moreover, HEOs also have been confirmed to be active for many thermocatalysis (heterogeneous and homogeneous) fields, electrocatalysis fields, and energy storage applications. This review summarizes the recent developments and challenging perspectives of HEOs for chemical catalysis, which are of great importance to guide the future directions of emerging HEO-based catalysis. High entropy oxides (HEOs) have attracted wide interest for chemical catalysis owing to abundant active sites, adjustable specific surface area, stable crystal structure, extraordinary geometric compatibility, and unique electronic balance factors, exhibiting huge potential value for commercial exploitation. Here, the recent progress and current challenges of HEOs from the typical synthetic strategies, unique structural features, and intrinsic properties to applications in both thermocatalysis and electrocatalysis are comprehensively summarized. In brief, the HEOs obtained by different synthetic strategies, along with their structural features and derived physical-chemical properties endowed by the entropy-driven effect, allow them with highly efficient catalytic application performance. More important, the remarkable enhancement of catalytic performance based on the pure and modified HEOs are discussed by analyzing reaction mechanisms to further motivate the development in this emerging field. Finally, the future directions and challenging perspectives for chemical catalysis over HEOs are also put forward.

10 citations