scispace - formally typeset
Search or ask a question
Author

Xueting Wang

Bio: Xueting Wang is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Endothelial stem cell & Cell. The author has an hindex of 2, co-authored 2 publications receiving 80 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The present data suggest that allicin attenuated the LPS-induced vascular injury process, which may be closely related to the oxidative stress and inflammatory response in HUVECs.
Abstract: Background: Allicin, a major component of garlic, is regarded as a cardioprotective agent and is associated with increased endothelial function. Methods: The effects of allicin on lipopolysaccharide (LPS)-induced vascular oxidative stress and inflammation in cultured human umbilical vein endothelial cells (HUVECs) and the mechanisms underlying these effects were studied. The protective effects were measured using cell viability, a lactate dehydrogenase (LDH) assay and cell apoptosis as indicators, and the anti-oxidative activity was determined by measuring reactive oxygen species (ROS) generation, oxidative products and endogenous antioxidant enzyme activities. HUVEC mitochondrial function was assessed by determining mitochondrial membrane potential (MMP) collapse, cytochrome c production and mitochondrial ATP release. To investigate the potential underlying mechanisms, we also measured the expression of dynamic mitochondrial proteins using western blotting. Furthermore, we evaluated the Nrf2 antioxidant signaling pathway using an enzyme-linked immunosorbent assay (ELISA). Results: Our results demonstrated that allicin enhanced HUVEC proliferation, which was suppressed by LPS exposure, and LDH release. Allicin ameliorated LPS-induced apoptosis, suppressed ROS overproduction, reduced lipid peroxidation and decreased the endogenous antioxidant enzyme activities in HUVECs. These protective effects were associated with the inhibition of mitochondrial dysfunction as indicated by decreases in the MMP collapse, cytochrome c synthesis and mitochondrial ATP release. In addition, allicin attenuated the LPS-induced inflammatory responses, including endothelial cell adhesion and TNF-α and IL-8 production. Furthermore, allicin increased the expression of LXRα in a dose-dependent manner. Allicin-induced attenuation of inflammation was inhibited by LXRα siRNA treatment. Finally, allicin activated NF-E2-related factor 2 (Nrf2), which controls the defense against oxidative stress and inflammation. Conclusions: Taken together, the present data suggest that allicin attenuated the LPS-induced vascular injury process, which may be closely related to the oxidative stress and inflammatory response in HUVECs. Allicin modulated Nrf2 activation and protected the cells against LPS-induced vascular injury. Our findings suggest that allicin attenuated the LPS-induced inflammatory response in blood vessels.

94 citations

Journal ArticleDOI
TL;DR: Overexpression of NEAT1 increased viability, migration and CDKN3 expression but decreased apoptotic rates, caspase-3 activity and miR-181d-5p expression in HUVECs.
Abstract: Endothelial cell (EC) dysfunction induces atherosclerotic coronary heart disease (CHD) development. Recent studies demonstrated that lncRNA NEAT1 mediates multiple biological functions of cells. How NEAT1 regulates EC function is still unclear, so this study explored the role and mechanism of NEAT1 in oxidative stress-induced ECs. The levels of NEAT1 and miR-181d-5p were measured in serum samples from ApoE-/- mice and t-BHP-treated human umbilical vein endothelial cells (HUVECs) by qRT-PCR. The potential role of NEAT1 in viability, migration and apoptosis was analyzed by CCK-8, cell metastasis, flow cytometry, dual-luciferase reporter, RNA immunoprecipitation and Western blot assays using HUVECs overexpressing NEAT1. The expression of NEAT1 was increased, but miR-181d-5p expression was decreased in serum samples from both ApoE-/- mice and t-BHP-treated HUVECs. Overexpression of NEAT1 increased viability, migration and CDKN3 expression but decreased apoptotic rates, caspase-3 activity and miR-181d-5p expression in HUVECs. In addition, NEAT1 acted as a promoter of the proangiogenic capacity of HUVECs by targeting miR-181d-5p/CDKN3. Altogether, these findings indicate that NEAT1 may exert a protective effect on HUVECs by regulating the miR-181d-5p/CDKN3A axis.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis and other CVDs based on these agents will require more detailed preclinical and clinical studies.

145 citations

Journal ArticleDOI
TL;DR: The authors discuss the mechanisms by which food and specific nutrients could affect the uraemic phenotype in chronic kidney disease (CKD), and suggest that a food-as-medicine approach could potentially be used to prevent and treat CKD and its complications.
Abstract: The observation that unhealthy diets (those that are low in whole grains, fruits and vegetables, and high in sugar, salt, saturated fat and ultra-processed foods) are a major risk factor for poor health outcomes has boosted interest in the concept of 'food as medicine'. This concept is especially relevant to metabolic diseases, such as chronic kidney disease (CKD), in which dietary approaches are already used to ameliorate metabolic and nutritional complications. Increased awareness that toxic uraemic metabolites originate not only from intermediary metabolism but also from gut microbial metabolism, which is directly influenced by diet, has fuelled interest in the potential of 'food as medicine' approaches in CKD beyond the current strategies of protein, sodium and phosphate restriction. Bioactive nutrients can alter the composition and metabolism of the microbiota, act as modulators of transcription factors involved in inflammation and oxidative stress, mitigate mitochondrial dysfunction, act as senolytics and impact the epigenome by altering one-carbon metabolism. As gut dysbiosis, inflammation, oxidative stress, mitochondrial dysfunction, premature ageing and epigenetic changes are common features of CKD, these findings suggest that tailored, healthy diets that include bioactive nutrients as part of the foodome could potentially be used to prevent and treat CKD and its complications.

110 citations

Journal ArticleDOI
Wu Jiang1, Maoqiang Li1, Fan He1, Shaobo Zhou1, Liulong Zhu1 
TL;DR: It is demonstrated that pharmacologic suppression of NLRP3 inflammasome activation controls neuroinflammation, attenuates mitochondrial dysfunction, alleviates the severity of spinal cord damage, and improves neurological recovery after SCI.
Abstract: Spinal cord injury (SCI) is a devastating disease, which results in tissue loss and neurologic dysfunction. NLRP3 inflammasome plays an important role in the mechanism of diverse diseases. However, no studies have demonstrated the role of NLRP3 inflammasome and the effects of NLRP3 inflammasome inhibitors in a mouse model of SCI. We investigated whether inhibition of NLRP3 inflammasome activation by the pharmacologic inhibitor BAY 11-7082 or A438079 could exert neuroprotective effects in a mouse model of SCI. SCI was performed using an aneurysm clip with a closing force of 30 g at the level of the T6-T7 vertebra for 1 min. Motor recovery was evaluated by an open-field test. Neuronal death was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining. Mitochondrial dysfunction was determined by quantitative real-time polymerase chain reaction (qPCR), western blot, and detection of mitochondrial membrane potential level. Microglia/macrophage activation and astrocytic response were evaluated by immunofluorescence labeling. Inhibition of NLRP3 inflammasome activation by pharmacologic inhibitor BAY 11-7082 or A438079 reduced neuronal death, attenuated spinal cord anatomic damage, and promoted motor recovery. Furthermore, BAY 11-7082 or A438079 directly attenuated the levels of NLRP3 inflammasome and proinflammatory cytokines. Moreover, BAY 11-7082 or A438079 alleviated microglia/macrophage activation, neutrophils infiltration, and reactive gliosis, as well as mitochondrial dysfunction. Collectively, our results demonstrate that pharmacologic suppression of NLRP3 inflammasome activation controls neuroinflammation, attenuates mitochondrial dysfunction, alleviates the severity of spinal cord damage, and improves neurological recovery after SCI. These data strongly indicate that the NLRP3 inflammasome is a vital contributor to the secondary damage of SCI in mice.

103 citations

Journal ArticleDOI
TL;DR: Results demonstrated that ASIV protected the integrity of BBB in LPS‐induced mice, the mechanism of which might be mediated via activating Nrf2 signaling pathway, and suggested that ASiv might be a potential neuroprotective drug acting on BBB.

81 citations

Journal ArticleDOI
TL;DR: Current research on the relationship between cardiovascular disease and nuclear factor erythropoietin-2-related factor 2/heme oxygenase 1 is summarized to help elucidate the potential of the Nrf2/HO-1 signaling axis.
Abstract: Cardiovascular disease, which can lead to angina and shortness of breath, remains one of the most serious threats to human health. Owing to its imperceptible symptoms, it is difficult to determine the pathogenesis and treatment methods for cardiovascular disease. Nuclear factor erythropoietin-2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) is a protein found in all cells of the human body. It is activated, transferred to the nucleus, and bound to DNA by antioxidant response elements (AREs). As a regulator of the antioxidant system, it upregulates the expression of HO-1 to reduce oxidative stress. Nrf2/HO-1 also has the ability to modulate calcium levels to prevent ferroptosis, pyroptosis, autophagy, programmed cell necrosis, alkaliptosis, and clockophagy. In view of the importance of Nrf2/HO-1 in the regulation of homeostasis, this review summarizes current research on the relationship between cardiovascular disease and Nrf2/HO-1. Normal cardiovascular diseases, such as viral myocarditis and myocardial ischemia-reperfusion injury, have been treated with Nrf2/HO-1. Rheumatic heart disease, cardiac tumors, arteriosclerosis, arrhythmia, hypertensive heart disease, and myocardial infarction have also been treated during experiments. Research has demonstrated the clinical application of Nrf2/HO-1 in pediatric cardiovascular disease; further clinical trials will help elucidate the potential of the Nrf2/HO-1 signaling axis.

73 citations