scispace - formally typeset
Search or ask a question
Author

Xueyan Zhao

Bio: Xueyan Zhao is an academic researcher from China University of Mining and Technology. The author has contributed to research in topics: Pollution & Air quality index. The author has co-authored 2 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors investigated PTE contamination from a large amalgamated gold mine tailings pond in Pinggu County, China, and the concentrations and pollution degree of PTEs in the samples and the sources of Sb, As, Cd, Cu, Pb, Zn and Hg were analyzed.
Abstract: The accumulation of tailings from gold mining and smelting may result in PTE pollution. We investigated PTE contamination from a large amalgamated gold mine tailings pond in Pinggu County, Beijing. In November 2017, 30 soil samples were collected around the tailings pond. The concentrations and pollution degree of PTEs in the samples and the sources of Sb, As, Cd, Cu, Pb, Zn and Hg were analyzed. The average concentration of these elements in soil samples near the tailings pond (16.24, 28.29, 0.99, 171.04, 263.25, 99.73, 0.72 mg/kg, respectively) were higher than their corresponding standard values and background values of the study area. The geoaccumulation index showed that the pollution degree of As, Pb and Hg was moderate, while Sb and Cu present non-pollution to moderate pollution. The average EF values of the elements were Sb (38.31), As (4.23), Cd (0.71), Cu (3.68), Pb (21.24), Zn (0.82) and Hg (5.29), respectively. The environmental risk assessment developed throughout the PERI method indicated that Sb, As, Hg and Pb were the main pollutants in the study area. The three quantitative risk indicators (RI, Igeo and EF) were positively correlated, and all of them indicated that PTEs had significant pollution to the local area. Thus, Sb, As, Pb, Cu, and Hg pollution should be highly concerning. Multivariate statistical analysis shows that the pollution of PTEs was mainly caused by the accumulation of tailings ponds after gold mining and smelting. The research result is of great significance for the prevention and control of soil pollution of PTEs near the tailings pond.

6 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive understanding of the evolution of the chemical composition, formation mechanisms, and the contribution of sources at different pollution levels is required to develop effective mitigation policies, and a comprehensive analysis of the development of chemical composition and formation mechanisms is required.
Abstract: To develop effective mitigation policies, a comprehensive understanding of the evolution of the chemical composition, formation mechanisms, and the contribution of sources at different pollution levels is required. PM2.5 samples were collected for 1 year from August 2016 to August 2017 at an urban site in Zibo, then chemical compositions were analyzed. Secondary inorganic aerosols (SNA), anthropogenic minerals (MIN), and organic matter (OM) were the most abundant components of PM2.5, but only the mass fraction of SNA increased as the pollution evolved, implying that PM2.5 pollution was caused by the formation of secondary aerosols, especially nitrate. A more intense secondary transformation was found in the heating season (from November 15, 2016, to March 14, 2017), and a faster secondary conversion of nitrate than sulfate was discovered as the pollution level increased. The formation of sulfate was dominated by heterogeneous reactions. High relative humidity (RH) in polluted periods accelerated the formation of sulfate, and high temperature in the non-heating season also promoted the formation of sulfate. Zibo city was under ammonium-rich conditions during polluted periods in both seasons; therefore, nitrate was mainly formed through homogeneous reactions. The liquid water content increased significantly as the pollution levels increased when the RH was above 80%, indicating that the hygroscopic growth of aerosol aggravated the PM2.5 pollution. Source apportionment showed that PM2.5 was mainly from secondary aerosol formation, road dust, coal combustion, and vehicle emissions, contributing 36.6%, 16.5%, 14.7%, and 13.1% of PM2.5 mass, respectively. The contribution of secondary aerosol formation increased remarkably with the deterioration of air quality, especially in the heating season.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , a study was carried out to determine the physico-chemical characteristics and heavy metal contents in roadside soil samples collected during two sampling periods (September 2018 and April 2019) from 8 different roadside sites lying parallel to the Buddha Nullah, an old rivulet, flowing through Ludhiana, (Punjab) India.
Abstract: The present study was carried out to determine the physico-chemical characteristics and heavy metal contents in roadside soil samples collected during 2 sampling periods (September 2018 and April 2019) from 8 different roadside sites lying parallel to the Buddha Nullah, an old rivulet, flowing through Ludhiana, (Punjab) India. The contents (mg/kg) of seven metals (cadmium, chromium, cobalt, copper, lead, nickel and zinc) were estimated using a flame atomic absorption spectrophotometer. Among the metals analyzed, the contents of Cd, Co, Cu, Pb and Zn were found above the permissible limits. The results of the index of geoaccumulation (Igeo), contamination factor (CF), contamination degree (Cdeg), modified contamination degree (mCdeg), the Nemerow pollution index (PI) and pollution load index (PLI) indicate a moderate to high heavy metal contamination of the analyzed soil samples. The results of the potential ecological risk factor (ERi) and potential ecological risk index (RI) indicate a low to moderate risk of heavy metals in the studied soil samples. The Pearson correlation analysis revealed that most of the variables exhibited a statistically significant correlation with one or more variables during the two samplings. Multivariate analysis demonstrates that contents of heavy metals in the study area are influenced by anthropogenic and geogenic factors.

9 citations

Journal ArticleDOI
TL;DR: In this article , the concentration of heavy metals in soil and water from upstream and downstream of the tailings dam was analyzed and the overall results of this study showed that the soil/water downstream of a tailing dam were not safe and must be protected against access to humans and domestic animals.
Abstract: ABSTRACT Tailings dam is the main heavy metal pollution source in mining areas. In this study, the concentration of heavy metals in soil and water from upstream and downstream of the tailings dam was analyzed. The concentration of As, Cd, Cu, Ni, Pb, and W in tailings soil exceeded the standard value but Hg and Zn in the tailings soil were far below the standard. Average concentrations of As, Pb, and W in soil samples were above the upstream reference soil. The level of As and Pb decreases, downstream as the distance from the tailings dam increases. The mean concentrations of the heavy metals in water for Ni, Cu, Zn, Pb, and Cd were 106.3, 57.3, 21.8, 14.5, and 8.0 µg/L, respectively. The Ni contents in all studied water samples had concentrations higher than Awata River and WHO guidelines for drinking water. Both geo-accumulation and ecological risk indices have indicated significant heavy metal pollution in the study area. The overall results of this study showed that the soil and water downstream of the tailings dam were not safe and must be protected against access to humans and domestic animals.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the potential ecological risk of potentially toxic elements (PTEs) in the soil and the health risk of PTEs through wolfberry consumption were determined, and Geostatistical methods were used to predict the PTE concentrations in the wolfberries and soil.
Abstract: Eight potentially toxic elements (PTEs, including nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr), and mercury (Hg)) in Lycium barbarum L. (wolfberries) and the associated root soil from a genuine producing area were analyzed. The potential ecological risk of PTEs in the soil and the health risk of PTEs through wolfberry consumption were determined. Geostatistical methods were used to predict the PTE concentrations in the wolfberries and soil. Positive matrix factorization (PMF) was applied to identify the source of PTEs in the soil. The PTE concentrations in the soils were within the standard limits, and Cd in the wolfberries exceeded the standard limit at only one site. The bioconcentration factors (BCF) order for the different PTEs was Cd > Cu > 1 > Zn > Cr > As > Ni > Pb, indicating that Cd and Cu were highly accumulated in wolfberries. The multiple regression models for Ni, Cu, Zn, As, Pb, and Cr concentrations in the wolfberries exhibited good correlations (p < 0.1). The ecological risk for Hg in the soil was high, whereas the risks for the remaining PTEs were mostly medium or low. Health risks for inhabitants through wolfberry consumption were not obvious. The spatial distributions of the PTEs in the soil differed from the PTE concentrations in the wolfberries. Source identification results were in the order of natural source (48.2%) > industrial activity source (27.8%) > agricultural activity source (14.5%) > transportation source (9.5%). The present study can guide the site selection of wolfberry cultivation and ensure the safety of wolfberry products when considering PTE contamination.
Journal ArticleDOI
TL;DR: In this paper , the Rossby wave train was used to forecast the types of air pollution on a daily to weekly time scale, and the reduction in PM2.5 emission was the main driving factor behind the absence of CP days in 2020.
Abstract: Co-occurrence of surface ozone (O3) and fine particulate matter (PM2.5) pollution (CP) was frequently observed in Beijing-Tianjin-Hebei (BTH). More than 50% of CP days occurred during April-May in BTH, and the CP days reached up to 11 in two months of 2018. The PM2.5 or O3 concentration associated with CP was lower than but close to that in O3 and PM2.5 pollution, indicating compound harms during CP days with double-high concentrations of PM2.5 and O3. CP days were significantly facilitated by joint effects of the Rossby wave train that consisted of two centers associated with the Scandinavia pattern and one center over North China as well as a hot, wet, and stagnant environmental condition in BTH. After 2018, the number of CP days decreased sharply while the meteorological conditions did not change significantly. Therefore, changes in meteorological conditions did not really contribute to the decline of CP days in 2019 and 2020. This implies that the reduction of PM2.5 emission has resulted in a reduction of CP days (about 11 days in 2019 and 2020). The differences in atmospheric conditions revealed here were helpful to forecast the types of air pollution on a daily to weekly time scale. The reduction in PM2.5 emission was the main driving factor behind the absence of CP days in 2020, but the control of surface O3 must be stricter and deeper.Supplementary material is available in the online version of this article at 10.1007/s11430-022-1070-y.